Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Meas Sci Au ; 4(1): 42-53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38404492

RESUMO

Mesalamine, known as 5-aminosalicylic acid, is a medication used primarily in the treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. 5-Aminosalicylic acid can be measured using various benchtop laboratory techniques which involve liquid chromatography-mass spectroscopy, but these are sophisticated and large, meaning that they cannot be used on-site because transportation of the samples, chemicals, and physical and biological reactions can potentially occur, which can affect the sample's composition and potentially result in inaccurate results. An alternative approach is the use of electrochemical based sensing platforms which has the advantages of portability, cost-efficiency, facile miniaturization, and rapid analysis while nonetheless providing sensitivity and selectivity. We provide an overview of the use of the electroanalytical techniques for the sensing of 5-aminosalicylic acid and compare them to other laboratory-based measurements. The applications, challenges faced, and future opportunities for electroanalytical based sensing platforms are presented in this review.

2.
Anal Methods ; 15(37): 4811-4826, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721714

RESUMO

Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.


Assuntos
Benzimidazóis , Carbamatos , Benzimidazóis/análise , Carbamatos/análise , Verduras , Frutas/química
3.
Anal Methods ; 15(22): 2709-2720, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218414

RESUMO

One of the principal raw ingredients used in the manufacturing of pharmaceuticals, nuclear fuel, and semiconductors is hydroxylamine, a mutagenic and carcinogenic substance, ranking high on the list of environmental contaminants. Electrochemical methods for monitoring hydroxylamine have the advantage of being portable, quick, affordable, simple, sensitive, and selective enough to maintain adequate constraints in contrast with conventional yet laboratory based quantification methods. This review outlines the most recent advancements in electroanalysis directed toward the sensing of hydroxylamine. Potential future advancements in this field are also offered, along with a discussion of method validation and the use of such devices in real samples for the determination of hydroxylamine.


Assuntos
Hidroxilaminas , Mutagênicos , Hidroxilamina/análise , Mutagênicos/análise , Técnicas Eletroquímicas/métodos , Carcinógenos
4.
RSC Adv ; 11(24): 14654-14664, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424017

RESUMO

We present the facile synthesis of Ni/NiO nanocomposites, via a solution combustion methodology, where the composition of metallic Ni within NiO is controlled by varying the annealing time, from 4 minutes up to 8 hours. The various Ni/NiO nanocomposites are studied via electrically wiring them upon screen-printed graphite macroelectrodes by physical deposition. Subsequently their electrochemical activity, towards the oxygen evolution reaction (OER), is assessed within (ultra-pure) alkaline media (1.0 M KOH). An optimal annealing time of 2 hours is found, which gives rise to an electrochemical oxidation potential (recorded at 10 mA cm-2) of 231 mV (vs. Ag/AgCl 1.46 vs. RHE). These values show the Ni/NiO nanocomposites to be significantly more electrocatalytic than a bare/unmodified SPE (460 mV vs. Ag/AgCl). A remarkable percentage increase (134%) in achievable current density is realised by the former over that of the latter. Tafel analysis and turn over frequency is reported with a likely underlying mechanism for the Ni/NiO nanocomposites towards the OER proposed. In the former case, Tafel analysis is overviewed for general multi-step overall electrochemical reaction processes, which can be used to assist other researchers in determining mechanistic information, such as electron transfer and rate determining steps, when exploring the OER. The optimal Ni/NiO nanocomposite exhibits promising stability at the potential of +231 mV, retaining near 100% of its achievable current density after 28 hours. Due to the facile and rapid fabrication methodology of the Ni/NiO nanocomposites, such an approach is ideally suited towards the mass production of highly active and stable electrocatalysts for application within the anodic catalyst layers of commercial alkaline electrolysers.

5.
RSC Adv ; 9(43): 24995-25002, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35528657

RESUMO

We present a rapid, environmentally benign one-pot synthesis technique for the production of a NiCo2O4/CoO and graphite composite that demonstrates efficient electrocatalysis towards the Oxygen Evolution Reaction (OER), in 1.0 M KOH. The NiCo2O4/CoO/graphitic carbon composite that displayed optimal OER catalysis was synthesized by nitrate decomposition in the presence of citric acid (synthesized glycine and sucrose variants displayed inferior electro kinetics towards the OER). Screen-printed electrodes modified with ca. 530 µg cm-2 of the citric acid NiCo2O4/CoO/graphite variant displayed remarkable OER catalysis with an overpotential (η) of +323 mV (vs. RHE) (recorded at 10 mA cm-2), which is superior to that of IrO2 (340 mV) and RuO2 (350 mV). The composite also exhibited a large achievable current density of 77 mA cm-2 (at +1.5 V (vs. RHE)), a high O2 turnover frequency of 1.53 × 10-2 s-1 and good stability over the course of 500 repeat cycles. Clearly, the NiCo2O4/CoO composite has the potential to replace precious metal based catalysts as the anodic material within electrolysers, thereby providing a reduction in the associated costs of hydrogen production via water splitting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA