Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175439

RESUMO

Ovarian cancer (OC) ranks as the second most common type of gynecological malignancy, has poor survival rates, and is frequently diagnosed at an advanced stage. Platinum-based chemotherapy, such as carboplatin, represents the standard-of-care for OC. However, toxicity and acquired resistance to therapy have proven challenging for the treatment of patients. Chemoresistance, a principal obstacle to durable response in OC patients, is attributed to alterations within the cancer cells, and it can also be mediated by the tumor microenvironment (TME). In this study, we report that conditioned medium (CM) derived from murine and human stromal cells, MS-5 and HS-5, respectively, and tumor-activated HS-5, was active in conferring platinum chemoresistance to OC cells. Moreover, CM derived from differentiated murine pre-adipocyte (3T3-L1), but not undifferentiated pre-adipocyte cells, confers platinum chemoresistance to OC cells. Interestingly, CM derived from tumor-activated HS-5 was more effective in conferring chemoresistance than was CM derived from HS-5 cells. Various OC cells exhibit variable sensitivity to CM activity. Exploring CM content revealed the enrichment of a number of soluble factors in the tumor-activated HS-5, such as soluble uPAR (SuPAR), IL-6, and hepatocyte growth factor (HGF). FDA-approved JAK inhibitors were mildly effective in restoring platinum sensitivity in two of the three OC cell lines in the presence of CM. Moreover, Crizotinib, an ALK and c-MET inhibitor, in combination with platinum, blocked HGF's ability to promote platinum resistance and to restore platinum sensitivity to OC cells. Finally, exposure to 2-hydroxyestardiol (2HE2) was effective in restoring platinum sensitivity to OC cells exposed to CM. Our results showed the significance of soluble factors found in TME in promoting platinum chemoresistance and the potential of combination therapy to restore chemosensitivity to OC cells.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Ovarianas , Humanos , Feminino , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos , Platina/farmacologia , Platina/uso terapêutico , Neoplasias Ovarianas/metabolismo , Carboplatina/uso terapêutico , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
2.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906729

RESUMO

Ovarian cancer (OC) is the second most common type of gynecological malignancy; it has poor survival rates and is frequently (>75%) diagnosed at an advanced stage. Platinum-based chemotherapy, with, e.g., carboplatin, is the standard of care for OC, but toxicity and acquired resistance to therapy have proven challenging. Despite advances in OC diagnosis and treatment, approximately 85% of patients will experience relapse, mainly due to chemoresistance. The latter is attributed to alterations in the cancer cells and is also mediated by tumor microenvironment (TME). Recently, we reported the synthesis of a platinum (IV) prodrug that exhibits equal potency toward platinum-sensitive and resistant OC cell lines. Here, we investigated the effect of TME on platinum sensitivity. Co-culture of OC cells with murine or human mesenchymal stem cells (MS-5 and HS-5, respectively) rendered them resistant to chemotherapeutic agents, including platinum, paclitaxel and colchicine. Platinum resistance was also conferred by co-culture with differentiated murine adipocyte progenitor cells. Exposure of OC cells to chemotherapeutic agents resulted in activation of phospho-ERK1/2. Co-culture with MS-5, which conferred drug resistance, was accompanied by blockage of phospho-ERK1/2 activation. The flavonoids fisetin and quercetin were active in restoring ERK phosphorylation, as well as sensitivity to platinum compounds. Exposure of OC cells to cobimetinib-a MEK1 inhibitor that also inhibits extracellular signal-regulated kinase (ERK) phosphorylation-which resulted in reduced sensitivity to the platinum compound. This suggests that ERK activity is involved in mediating the function of flavonoids in restoring platinum sensitivity to OC co-cultured with cellular components of the TME. Our data show the potential of combining flavonoids with standard therapy to restore drug sensitivity to OC cells and overcome TME-mediated platinum drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Flavonoides/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Células 3T3-L1 , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/farmacologia , Carcinoma/tratamento farmacológico , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Flavonoides/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Platina/farmacologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA