Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Invertebr Syst ; 382024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38744497

RESUMO

Despite the widespread use of integrative taxonomic approaches, many scleractinian coral genera and species remain grouped in polyphyletic families, classified as incertae sedis or simply understudied. Oculinidae Gray, 1847 represents a family for which many taxonomic questions remain unresolved, particularly those related to some of the current genera, such as Oculina Lamark, 1816 or recently removed genera, including Cladocora Ehrenberg, 1834 and Madrepora Linnaeus, 1758. Cladocora is currently assigned to the family Cladocoridae Milne Edwards & Haime, 1857 and a new family, Bathyporidae Kitahara, Capel, Zilberberg & Cairns, 2024, was recently raised to accommodate Madrepora . However, the name Bathyporidae is not valid because this was not formed on the basis of a type genus name. To resolve taxonomic questions related to these three genera, the evolutionary relationships are explored through phylogenetic analyses of 18 molecular markers. The results of these analyses support a close relationship between the species Oculina patagonica and Cladocora caespitosa , indicating that these may belong to the same family (and possibly genus), and highlighting the need for detailed revisions of Oculina and Cladocora . By contrast, a distant relationship is found between these two species and Madrepora oculata , with the overall evidence supporting the placement of Madrepora in the resurrected family Madreporidae Ehrenberg, 1834. This study advances our knowledge of coral systematics and highlights the need for a comprehensive review of the genera Oculina , Cladocora and Madrepora .


Assuntos
Antozoários , Filogenia , Animais , Antozoários/classificação , Especificidade da Espécie
2.
J Hered ; 106(3): 322-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25810120

RESUMO

Microsatellite loci were isolated for the first time for the deep-sea coral Desmophyllum dianthus, using 454 GS-FLX Titanium pyrosequencing. We developed conditions for amplifying 24 markers in 10 multiplex reactions. Three to 16 alleles per locus were detected across 25 samples analyzed from Santa Maria di Leuca coral province (Mediterranean Sea). For the 24 polymorphic loci, observed and expected heterozygosities ranged from 0.211 to 0.880 and 0.383 to 0.910, respectively; 3 loci deviated from Hardy-Weinberg equilibrium, after null allele and sequential Holm-Bonferroni corrections. These newly isolated microsatellites are very useful genetic markers that provide data for future conservation strategies. Cross-amplification of these microsatellites, tested in 46 coral species, representing 40 genera, and 10 families of the phylum Cnidaria, produced informative allelic profiles for 1 to 24 loci. The utility of extending analyses to cross-species amplifications is also discussed.


Assuntos
Antozoários/genética , Genética Populacional , Repetições de Microssatélites , Alelos , Animais , Conservação dos Recursos Naturais , Loci Gênicos , Marcadores Genéticos , Heterozigoto , Mar Mediterrâneo , Análise de Sequência de DNA , Especificidade da Espécie
3.
PLoS One ; 7(11): e50215, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209679

RESUMO

The cosmopolitan solitary deep-water scleractinian coral Desmophyllum dianthus (Esper, 1794) was selected as a representative model species of the polyphyletic Caryophylliidae family to (1) examine phylogenetic relationships with respect to the principal Scleractinia taxa, (2) check population structure, (3) test the widespread connectivity hypothesis and (4) assess the utility of different nuclear and mitochondrial markers currently in use. To carry out these goals, DNA sequence data from nuclear (ITS and 28S) and mitochondrial (16S and COI) markers were analyzed for several coral species and for Mediterranean populations of D. dianthus. Three phylogenetic methodologies (ML, MP and BI), based on data from the four molecular markers, all supported D. dianthus as clearly belonging to the "robust" clade, in which the species Lophelia pertusa and D. dianthus not only grouped together, but also shared haplotypes for some DNA markers. Molecular results also showed shared haplotypes among D. dianthus populations distributed in regions separated by several thousands of kilometers and by clear geographic barriers. These results could reflect limited molecular and morphological taxonomic resolution rather than real widespread connectivity. Additional studies are needed in order to find molecular markers and morphological features able to disentangle the complex phylogenetic relationship in the Order Scleractinia and to differentiate isolated populations, thus avoiding the homoplasy found in some morphological characters that are still considered in the literature.


Assuntos
Dianthus/fisiologia , Animais , Antozoários , Sequência de Bases , Núcleo Celular/metabolismo , DNA/genética , DNA Intergênico/metabolismo , DNA Mitocondrial/genética , Ecossistema , Evolução Molecular , Variação Genética , Genética Populacional , Haplótipos , Região do Mediterrâneo , Mitocôndrias/metabolismo , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA