Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(15): 1941-1954, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39058279

RESUMO

Hexosaminidases are key enzymes in glycoconjugate metabolism and occur in all kingdoms of life. Here, we have investigated the phylogeny of the GH20 glycosyl hydrolase family in nematodes and identified a ß-hexosaminidase subclade present only in the Dorylaimia. We have expressed one of these, HEX-2 from Trichuris suis, a porcine parasite, and shown that it prefers an aryl ß-N-acetylgalactosaminide in vitro. HEX-2 has an almost neutral pH optimum and is best inhibited by GalNAc-isofagomine. Toward N-glycan substrates, it displays a preference for the removal of GalNAc residues from LacdiNAc motifs as well as the GlcNAc attached to the α1,3-linked core mannose. Therefore, it has a broader specificity than insect fused lobe (FDL) hexosaminidases but one narrower than distant homologues from plants. Its X-ray crystal structure, the first of any subfamily 1 GH20 hexosaminidase to be determined, is closest to Streptococcus pneumoniae GH20C and the active site is predicted to be compatible with accommodating both GalNAc and GlcNAc. The new structure extends our knowledge about this large enzyme family, particularly as T. suis HEX-2 also possesses the key glutamate residue found in human hexosaminidases of either GH20 subfamily, including HEXD whose biological function remains elusive.


Assuntos
Biologia Computacional , Trichuris , Animais , Trichuris/enzimologia , Especificidade por Substrato , Biologia Computacional/métodos , Cristalografia por Raios X , Sequência de Aminoácidos , Filogenia , Modelos Moleculares , Hexosaminidases/química , Hexosaminidases/metabolismo , Hexosaminidases/genética , Dados de Sequência Molecular , Domínio Catalítico , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , beta-N-Acetil-Hexosaminidases/metabolismo , beta-N-Acetil-Hexosaminidases/química , beta-N-Acetil-Hexosaminidases/genética
2.
Animals (Basel) ; 13(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37893930

RESUMO

Gastrointestinal nematodes, most notably trichostrongylids, are known to cause significant losses in sheep production. Previous studies have shown that monitoring parameters (e.g., FAMACHA©, BCS, dag score) change with increasing egg excretion. These parameters are well known and frequently used for targeted selective treatment. Based on the willingness to participate in this study (based on a previous questionnaire distribution among sheep farmers in Austria) we investigated the associations between faecal egg counts and the FAMACHA©, BCS, and dag scores of 1195 dairy ewes. Faecal samples were analysed using the Mini-FLOTAC technique I and larval culture. Three raters assessed the FAMACHA©, BCS, and dag scores in sheep to calculate the inter-rater agreement and intraclass correlation coefficient. The responses to the questionnaire of 23 farms were used for the evaluation, of which 16 farms were visited. Trichostrongylid eggs were detected in 95% of the faecal samples. The BCS was negatively correlated with the eggs per gram of faeces (EpG) (r = -0.156; p < 0.001) and the FAMACHA© score was slightly positively correlated with EpG (r = 0.196; p < 0.001). A small proportion of sheep (25%) shed the majority of eggs (47% to 84%). A moderate to good agreement for the parameters was found between the raters. In conclusion, the clinical parameters showed only weak correlations with faecal egg counts, and we confirmed that a minority of the flock is responsible for the majority of the pasture contamination with trichostrongylid eggs. Clinical raters should be trained before a study to increase the agreement between them.

3.
Animals (Basel) ; 12(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139199

RESUMO

The evolutionary success of parasitic worms causes significant economic losses and animal health problems, including in the small ruminant industry. The hematophagous nematode Haemonchus contortus is a common endoparasite that infects wild and domestic ruminants worldwide, especially in tropical and subtropical regions. To date, the most commonly applied control strategy is the administration of anthelminthic drugs. The main disadvantages of these chemicals are their ecotoxic effects, the necessary withdrawal period (especially important in dairy animals) and the increasing development of resistance. Vaccines offer an attractive alternative control strategy against Haemonchus infections. In previous years, several potential vaccine antigens prepared from H. contortus using the latest technologies have been assessed in clinical trials using different methods and strategies. This review highlights the current state of knowledge on anti-H. contortus vaccines (covering native, recombinant and DNA-based vaccines), including an evaluation, as well a discussion of the challenges and achievements in developing protective, efficient, and long-lasting vaccines to control H. contortus infection and haemonchosis in small ruminants. This paper also addresses novel developments tackling the challenge of glycosylation of putative candidates in recombinant form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA