Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 16: 267-279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379607

RESUMO

Chronic antibiotic use has been reported to impair mitochondrial indices, hypothalamus-mediated metabolic function, and amygdala-regulated emotional processes. Natural substances such as black seed (Nigella sativa) oil could be beneficial in mitigating these impairments. This study aimed to assess the impact of black seed oil (NSO) on depression and sociability indices, redox imbalance, mitochondrial-dependent markers, and insulin expression in mice subjected to chronic ampicillin exposure. Forty adult male BALB/c mice (30 ± 2 g) were divided into five groups: the CTRL group received normal saline, the ABT group received ampicillin, the NSO group received black seed oil, the ABT/NSO group concurrently received ampicillin and black seed oil, and the ABT+NSO group experienced pre-exposure to ampicillin followed by subsequent treatment with black seed oil. The ampicillin-exposed group exhibited depressive-like behaviours, impaired social interactive behaviours, and disruptions in mitochondrial-dependent markers in plasma and hypothalamic tissues, accompanied by an imbalance in antioxidant levels. Moreover, chronic antibiotic exposure downregulated insulin expression in the hypothalamus. However, these impairments were significantly ameliorated in the ABT/NSO, and ABT+NSO groups compared to the untreated antibiotic-exposed group. Overall, findings from this study suggest the beneficial role of NSO as an adjuvant therapy in preventing and abrogating mood behavioural and neural-metabolic impairments of chronic antibiotic exposure.

2.
Toxicol Rep ; 12: 23-40, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38193024

RESUMO

Organophosphate poisoning remains a global health crisis without efficacious treatments to prevent neurotoxicity. We examined whether antidotal tiger nut and coconut dietary intervention could ameliorate neurobehavioral deficits from organophosphate dichlorvos-induced gut-brain axis dysregulation in a mouse model. Mice were divided into groups given control diet, dichlorvos-contaminated diets, or dichlorvos plus nut-enriched diets. They were exposed to a DDVP-contaminated diet for 4 weeks before exposure to the treatment diets for another 8 weeks. This was followed by behavioural assessments for cognitive, motor, anxiety-, and depressive-like behaviours. Faecal samples (pre- and post-treatment), as well as blood, brain, and gut tissues, were collected for biochemical assessments following euthanasia. Dichlorvos-exposed mice displayed impairments in cognition, motor function, and mood along with disrupted inflammatory and antioxidant responses, neurotrophic factor levels, and acetylcholinesterase activity in brain and intestinal tissues. Weight loss and altered short-chain fatty acid levels additionally indicated gut dysfunction. However, intervention with tiger nut and/or coconut- enriched diet after dichlorvos exposure attenuated these neurobehavioral, and biochemical alterations. Our findings demonstrate organophosphate-induced communication disruptions between the gut and brain pathways that manifest in neuropsychiatric disturbances. Overall, incorporating fibre-rich nuts may represent an antidotal dietary strategy to reduce neurotoxicity and prevent brain disorders associated with organophosphate poisoning.

3.
Neurotox Res ; 40(6): 2001-2015, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36434357

RESUMO

Using the Unpredictable Chronic Sleep Deprivation (UCSD) paradigm we developed, the combined effects of chronic sleep deprivation and high caffeine intake on prefrontal cortical synaptophysin expression, neurochemical profiles, and behavioural outcomes in Long-Evans rats were evaluated. The combination of chronic sleep deprivation and high-dose caffeine treatment produced varying degrees of behavioural impairments, depletion of antioxidants, serotonin, and an upregulation of acetylcholinesterase (AChE) activity in the prefrontal cortex. An immunohistochemical assessment revealed a reduction in synaptophysin protein expression in the prefrontal cortex following exposure to high-dose caffeine and chronic sleep deprivation. Overall, our findings support the advocacy for adequate sleep for optimal mental performance as a high intake of caffeine to attenuate the effects of sleep deprivation that may alter the neurochemical profile and synaptic plasticity in the prefrontal cortex, significantly increasing the risk of neuropsychiatric/degenerative disorders.


Assuntos
Cafeína , Privação do Sono , Ratos , Animais , Cafeína/farmacologia , Privação do Sono/tratamento farmacológico , Ratos Long-Evans , Sinaptofisina , Acetilcolinesterase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA