RESUMO
INTRODUCTION: The frequency and implications of secondary findings (SFs) from genomic testing data have been extensively researched. However, little is known about the frequency or reporting of SFs in Africans, who are underrepresented in large-scale population genomic studies. The availability of data from the first whole-genome sequencing for orofacial clefts in an African population motivated this investigation. METHODS: In total, 130 case-parent trios were analyzed for SFs within the ACMG SFv.3.0 list genes. Additionally, we filtered for four more genes (HBB, HSD32B, G6PD and ACADM). RESULTS: We identified 246 unique variants in 55 genes; five variants in four genes were classified as pathogenic or likely pathogenic (P/LP). The P/LP variants were seen in 2.3% (9/390) of the subjects, a frequency higher than ~1% reported for diverse ethnicities. On the ACMG list, pathogenic variants were observed in PRKAG (p. Glu183Lys). Variants in the PALB2 (p. Glu159Ter), RYR1 (p. Arg2163Leu) and LDLR (p. Asn564Ser) genes were predicted to be LP. CONCLUSION: This study provides information on the frequency and pathogenicity of SFs in an African cohort. Early risk detection will help reduce disease burden and contribute to efforts to increase knowledge of the distribution and impact of actionable genomic variants in diverse populations.
Assuntos
Fenda Labial , Fissura Palatina , Humanos , Predisposição Genética para Doença , Fenda Labial/genética , Fissura Palatina/genética , Genômica , África Subsaariana/epidemiologiaRESUMO
BACKGROUND: To date, there are over 320 variants identified in the IRF6 gene that cause Van der Woude syndrome or popliteal pterygium syndrome. We sequenced this gene in a South African orofacial cleft cohort to identify the causal IRF6 variants in our population. METHOD: Saliva samples from 100 patients with syndromic and non-syndromic CL ± P were collected. Patients were recruited from the cleft clinics at two public, tertiary hospitals in Durban, South Africa (SA), namely Inkosi Albert Luthuli Central Hospital (IALCH) and KwaZulu-Natal Children's Hospital (KZNCH). We prospectively sequenced the exons of IRF6 in 100 orofacial cleft cases, and where possible, we also sequenced the parents of the individuals to determine the segregation pattern. RESULTS: Two variants were identified; one novel (p.Cys114Tyr) and one known (p.Arg84His) missense variant in IRF6 gene were identified. The patient with the p.Cys114Tyr variant was non-syndromic with no clinical VWS phenotype expected of individuals with IRF6 coding variants, and the patient with the p.Arg84His had phenotypic features of popliteal pterygium syndrome. The p.Arg84His variant segregated in the family, with the father also being affected. CONCLUSIONS: This study provides evidence that IRF6 variants are found in the South African population. Genetic counselling is essential for affected families, particularly in the absence of a known clinical phenotype since it helps with the plans for future pregnancies.
Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/genética , Fissura Palatina/genética , África do Sul , Fatores Reguladores de Interferon/genética , MutaçãoRESUMO
Novel or rare damaging mutations have been implicated in the developmental pathogenesis of nonsyndromic cleft lip with or without cleft palate (nsCL ± P). Thus, we investigated the human genome for high-impact mutations that could explain the risk of nsCL ± P in our cohorts.We conducted next-generation sequencing (NGS) analysis of 130 nsCL ± P case-parent African trios to identify pathogenic variants that contribute to the risk of clefting. We replicated this analysis using whole-exome sequence data from a Brazilian nsCL ± P cohort. Computational analyses were then used to predict the mechanism by which these variants could result in increased risks for nsCL ± P.We discovered damaging mutations within the AFDN gene, a cell adhesion molecule (CAMs) that was previously shown to contribute to cleft palate in mice. These mutations include p.Met1164Ile, p.Thr453Asn, p.Pro1638Ala, p.Arg669Gln, p.Ala1717Val, and p.Arg1596His. We also discovered a novel splicing p.Leu1588Leu mutation in this protein. Computational analysis suggests that these amino acid changes affect the interactions with other cleft-associated genes including nectins (PVRL1, PVRL2, PVRL3, and PVRL4) CDH1, CTNNA1, and CTNND1.This is the first report on the contribution of AFDN to the risk for nsCL ± P in humans. AFDN encodes AFADIN, an important CAM that forms calcium-independent complexes with nectins 1 and 4 (encoded by the genes PVRL1 and PVRL4). This discovery shows the power of NGS analysis of multiethnic cleft samples in combination with a computational approach in the understanding of the pathogenesis of nsCL ± P.
RESUMO
Background: Several population-based case-control studies have reported concurrent presentation of cancer and congenital malformations. Many associations have been made between oral clefting and cancers, though some of these results are conflicting. Some studies have reported an increased risk of cancer among 1st-degree relatives of cleft cases and vice versa, and also an excess risk of cancers of the breast, lung, and brain among those with oral clefts. This study aimed to determine if the genetic polymorphisms found in some cancers are also associated with orofacial cleft in an African cohort. Methods: The study was a case-control and case-triad study in which cases were 400 individuals clinically diagnosed with non-syndromic cleft lip and/or palate (CL/P), while controls were 450 individuals without CL/P. Samples were obtained from three African countries while DNA extraction, PCR, and genotyping were carried out at the University of Iowa, US. Eleven SNPs in genes coding for SWI/SNF subunits and 13 GWAS significant SNPs for cancers associated with orofacial cleft were selected. Case-control analysis, transmission disequilibrium test (TDT), and DFAM to combine the parent-offspring trio data and unrelated case/control data in a single analysis were carried out using PLINK. Results: For the case-control analyses that included all the clefts and for the CLP subtype, none of the SNPs were statistically significant. Statistically increased risk for the following SNPs rs34775372 (p = 0.02; OR = 1.54, CI:1.07-2.22), rs55658222 (p = 0.009; OR = 2.64, CI:1.28-5.45) and rs72728755 (p = 0.02; OR=2.27, CI:1.17-4.45) was observed with the CL only sub-group. None of these were significant after Bonferoni correction. In the TDT analyses, a significantly reduced risk with rs10941679 (p = 0.003; OR = 0.43, CI:0.24-0.75) was observed and this was significant after Bonferroni correction. The rs10941679 was also significant (p = 0.003) in the DFAM analyses as well even after Bonferroni correction. Conclusion: The results from this study represent an important starting point for understanding the concurrent presentation of some cancers in orofacial clefts, and cancer risks in cleft patients. The associations observed warrant further investigation in a larger cohort and will set the stage for a more mechanistic approach toward understanding the risk for cancers in families with clefts.
RESUMO
The majority (85%) of nonsyndromic cleft lip with or without cleft palate (nsCL/P) cases occur sporadically, suggesting a role for de novo mutations (DNMs) in the etiology of nsCL/P. To identify high impact protein-altering DNMs that contribute to the risk of nsCL/P, we conducted whole-genome sequencing (WGS) analyses in 130 African case-parent trios (affected probands and unaffected parents). We identified 162 high confidence protein-altering DNMs some of which are based on available evidence, contribute to the risk of nsCL/P. These include novel protein-truncating DNMs in the ACTL6A, ARHGAP10, MINK1, TMEM5 and TTN genes; as well as missense variants in ACAN, DHRS3, DLX6, EPHB2, FKBP10, KMT2D, RECQL4, SEMA3C, SEMA4D, SHH, TP63, and TULP4. Many of these protein-altering DNMs were predicted to be pathogenic. Analysis using mouse transcriptomics data showed that some of these genes are expressed during the development of primary and secondary palate. Gene-set enrichment analysis of the protein-altering DNMs identified palatal development and neural crest migration among the few processes that were significantly enriched. These processes are directly involved in the etiopathogenesis of clefting. The analysis of the coding sequence in the WGS data provides more evidence of the opportunity for novel findings in the African genome.
Assuntos
Fenda Labial , Fissura Palatina , Animais , Encéfalo/anormalidades , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Camundongos , Mutação , Polimorfismo de Nucleotídeo ÚnicoRESUMO
OBJECTIVES: Cleft lip with/without cleft palate and cleft palate only is congenital birth defects where the upper lip and/or palate fail to fuse properly during embryonic facial development. Affecting ~1.2/1000 live births worldwide, these orofacial clefts impose significant social and financial burdens on affected individuals and their families. Orofacial clefts have a complex etiology resulting from genetic variants combined with environmental covariates. Recent genome-wide association studies and whole-exome sequencing for orofacial clefts identified significant genetic associations and variants in several genes. Of these, we investigated the role of common/rare variants in SHH, RORA, MRPL53, ACVR1, and GDF11. MATERIALS AND METHODS: We sequenced these five genes in 1255 multi-ethnic cleft lip with/without palate and cleft palate only samples in order to find variants that may provide potential explanations for the missing heritability of orofacial clefts. Rare and novel variants were further analyzed using in silico predictive tools. RESULTS: Ninteen total variants of interest were found, with variant types including stop-gain, missense, synonymous, intronic, and splice-site variants. Of these, 3 novel missense variants were found, one in SHH, one in RORA, and one in GDF11. CONCLUSION: This study provides evidence that variants in SHH, RORA, MRPL53, ACVR1, and GDF11 may contribute to risk of orofacial clefts in various populations.
Assuntos
Fenda Labial , Fissura Palatina , Proteínas Morfogenéticas Ósseas , Fenda Labial/genética , Fissura Palatina/genética , Estudo de Associação Genômica Ampla , Fatores de Diferenciação de Crescimento/genética , HumanosRESUMO
OBJECTIVE: The etiology of cleft palate (CP) is poorly understood compared with that of cleft lip with or without palate (CL ± P). Recently, variants in Grainyhead like transcription factor 3 (GRHL3) were reported to be associated with a risk for CP in European and some African populations including Nigeria, Ghana, and Ethiopia. In order to identify genetic variants that may further explain the etiology of CP, we sequenced GRHL3 in a South African population to determine if rare variants in GRHL3 are associated with the presence of syndromic or nonsyndromic CP. DESIGN: We sequenced the exons of GRHL3 in 100 cases and where possible, we sequenced the parents of the individuals to determine the segregation pattern and presence of de novo variants. SETTING: The cleft clinics from 2 public, tertiary hospitals in Durban, South Africa (SA), namely Inkosi Albert Luthuli Central Hospital and KwaZulu-Natal Children's Hospital. PATIENTS, PARTICIPANTS: One hundred patients with CL ± P and their parents. INTERVENTIONS: Saliva samples were collected. MAIN OUTCOME MEASURES: To ascertain the genetic variants in the GRHL3 gene in patients with CL ± P in SA. RESULTS: Five variants in GRHL3 were observed; 3 were novel and 2 were known variants. The novel variants were intronic variants (c.1062 + 77A>G and c.627 + 1G>A) and missense variant (p.Asp169Gly). CONCLUSIONS: This study provides further evidence that variants in GRHL3 contribute to the risk of nonsyndromic CP in African populations, specifically, in the South African population.
Assuntos
Fenda Labial , Fissura Palatina , Criança , Fenda Labial/genética , Fissura Palatina/genética , Proteínas de Ligação a DNA/genética , Humanos , Polimorfismo de Nucleotídeo Único , África do Sul , Fatores de Transcrição/genéticaRESUMO
OBJECTIVE: Nonsyndromic cleft lip and/or cleft palate (NSCL/P) have multifactorial etiology where genetic factors, gene-environment interactions, stochastic factors, gene-gene interactions, and parent-of-origin effects (POEs) play cardinal roles. POEs arise when the parental origin of alleles differentially impacts the phenotype of the offspring. The aim of this study was to identify POEs that can increase risk for NSCL/P in humans using a genome-wide dataset. METHODS: The samples (174 case-parent trios from Ghana, Ethiopia, and Nigeria) included in this study were from the African only genome wide association studies (GWAS) that was published in 2019. Genotyping of individual DNA using over 2 million multiethnic and African ancestry-specific single-nucleotide polymorphisms from the Illumina Multi-Ethnic Genotyping Array v2 15070954 A2 (genome build GRCh37/hg19) was done at the Center for Inherited Diseases Research. After quality control checks, PLINK was employed to carry out POE analysis employing the pooled subphenotypes of NSCL/P. RESULTS: We observed possible hints of POEs at a cluster of genes at a 1 mega base pair window at the major histocompatibility complex class 1 locus on chromosome 6, as well as at other loci encompassing candidate genes such as ASB18, ANKEF1, AGAP1, GABRD, HHAT, CCT7, DNMT3A, EPHA7, FOXO3, lncRNAs, microRNA, antisense RNAs, ZNRD1, ZFAT, and ZBTB16. CONCLUSION: Findings from our study suggest that some loci may increase the risk for NSCL/P through POEs. Additional studies are required to confirm these suggestive loci in NSCL/P etiology.
Assuntos
Fenda Labial , Fissura Palatina , África Subsaariana , Fenda Labial/genética , Fissura Palatina/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Early childhood caries (ECC) is a rapidly progressing form of dental infection and a significant public health problem, especially among socially and economically disadvantaged populations. This study aimed to assess the risk factors for ECC among a cohort of Sub-Saharan African children and to determine the role of genetics in the etiology of ECC. METHODS: A sample of 691 children (338 with ECC, 353 without ECC, age < 6 years) was recruited from schools in Lagos, Nigeria. Socio-demographic, dental services utilization and infant dietary data were obtained with interviewer-administered questionnaire. Oral examination was conducted using the WHO oral health diagnostic criteria. Saliva samples were collected from the children for genetic analysis. Single nucleotide polymorphisms were selected from previous study for genotyping. Genetic association analyses to investigate the role of genetics in the etiology of ECC was done. Bivariate comparisons and Multivariate logistic regression analyses were conducted to assess associations between ECC and predictor variables, p < 0.05. RESULTS: Of the 338 children with ECC, 64 (18.9%) had Severe-Early Childhood Caries (S-ECC). Children aged 48-59 months comprised the highest proportion of subjects with ECC (165; 48.8%) and S-ECC (24; 37.5%) while female subjects had higher dt (3.13 ± 2.56) and dmft values 3.27 ± 2.64. ECC was significantly more prevalent among children who were breastfed at night ≥ 12 months (OR 3.30; CI 0.39, 4.75), those with no previous dental visit (OR 1.71; CI 0.24, 2.77), those who used sweetened pacifiers (OR 1.85; CI 0.91, 3.79) and those who daily consumed sugar-sweetened drinks/snacks (OR 1.35; CI 0.09, 18.51). A suggestive increased risk for ECC (OR 1.26, p = 0. 0.0397) was observed for the genetic variant rs11239282 on chromosome 10. We also observed a suggestive reduced risk for ECC (OR 0.80, p = 0.03) for the rs131777 on chromosome 22. None of the genetic variants were significant after correction for multiple testing (Bonferroni p value p = 0.004). CONCLUSIONS: Prolonged night-time breastfeeding, poor utilization of dental services and daily consumption of sugar were risk factors for ECC. Larger sample size is needed to confirm the results of the genetic analysis and to conduct genome wide studies in order to discover new risk loci for ECC.
Assuntos
Suscetibilidade à Cárie Dentária , Cárie Dentária , África Subsaariana , Criança , Pré-Escolar , Estudos Transversais , Cárie Dentária/epidemiologia , Cárie Dentária/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Nigéria , Projetos Piloto , Prevalência , Fatores de RiscoRESUMO
BACKGROUND: The development of the face occurs during the early days of intrauterine life by the formation of facial processes from the first Pharyngeal arch. Derangement in these well-organized fusion events results in Orofacial clefts (OFC). Van der Woude syndrome (VWS) is one of the most common causes of syndromic cleft lip and/or palate accounting for 2% of all cases. Mutations in the IRF6 gene account for 70% of cases with the majority of these mutations located in the DNA-binding (exon 3, 4) or protein-binding domains (exon 7-9). The current study was designed to update the list of IRF6 variants reported for VWS by compiling all the published mutations from 2013 to date as well as including the previously unreported VWS cases from Africa and Puerto Rico. METHODS: We used PubMed with the search terms; "Van der Woude syndrome," "Popliteal pterygium syndrome," "IRF6," and "Orofacial cleft" to identify eligible studies. We compiled the CADD score for all the mutations to determine the percentage of deleterious variants. RESULTS: Twenty-one new mutations were identified from nine papers. The majority of these mutations were in exon 4. Mutations in exon 3 and 4 had CADD scores between 20 and 30 and mutations in exon 7-9 had CADD scores between 30 and 40. The presence of higher CADD scores in the protein-binding domain (exon 7-9) further confirms the crucial role played by this domain in the function of IRF6. In the new cases, we identified five IRF6 mutations, three novel missense mutations (p.Phe36Tyr, p.Lys109Thr, and p.Gln438Leu), and two previously reported nonsense mutations (p.Ser424*and p.Arg250*). CONCLUSION: Mutations in the protein and DNA-binding domains of IRF6 ranked among the top 0.1% and 1% most deleterious genetic mutations, respectively. Overall, these findings expand the range of VWS mutations and are important for diagnostic and counseling purposes.