Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617268

RESUMO

In recent dog and cat experiments, a novel milk oligosaccharide biosimilar (GNU100) positively modulated fecal microbiota and metabolite profiles, suggesting benefits to gastrointestinal health. The objective of this study was to investigate the effects of GNU100 on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Twelve healthy adult female dogs (mean age: 3.74 ± 2.4 yr) were used in an 8-wk crossover design study (dogs underwent both treatments). All dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were orally administered metronidazole (20 mg/kg BW) twice daily. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, and 8 for measurement of pH, dry matter, microbiota populations, and BA, immunoglobulin A, and calprotectin concentrations. On weeks 0, 4, and 8, blood samples were collected for serum chemistry and hematology analysis. All data were analyzed as repeated measures using the Mixed Models procedure of SAS version 9.4, with significance considered P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools) and modified (P < 0.05) fecal microbiota and BA profiles. Using qPCR, metronidazole reduced fecal Blautia, Fusobacterium, Turicibacter, Clostridium hiranonis, and Faecalibacterium abundances, and increased fecal Streptococcus and Escherichia coli abundances. DNA sequencing analysis demonstrated that metronidazole reduced microbial alpha diversity and influenced the relative abundance of 20 bacterial genera and families. Metronidazole also increased primary BA and reduced secondary BA concentrations. Most antibiotic-induced changes returned to baseline by week 8. Fecal scores were more stable (P = 0.01) in GNU100-fed dogs than controls after antibiotic administration. GNU100 also influenced fecal microbiota and BA profiles, reducing (P < 0.05) the influence of metronidazole on microbial alpha diversity and returning some fecal microbiota and secondary BA to baseline levels at a quicker (P < 0.05) rate than controls. In conclusion, our results suggest that GNU100 supplementation provides benefits to dogs treated with antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and secondary BA profiles which play an essential role in gut health.


Our objective was to test the effects of a novel milk oligosaccharide biosimilar (GNU100) on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were given an oral antibiotic. Fecal scores were recorded and fresh fecal samples were collected over time to assess fecal characteristics, microbiota populations, and BA concentrations. The antibiotic was shown to increase fecal scores (looser stools) and modify fecal microbiota populations (altered diversity and ~20 bacterial genera and families) and BA profiles (increased primary and reduced secondary BA). Most antibiotic-induced changes returned to baseline by week 8. In dogs fed GNU100, fecal scores were more stable and changes to microbial diversity were lower than controls after antibiotic administration. Fecal microbiota and secondary BA of GNU100-fed dogs also returned to baseline levels at a quicker rate than controls. These results suggest that GNU100 provides benefits to dogs given antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and BA profiles.


Assuntos
Medicamentos Biossimilares , Doenças do Gato , Doenças do Cão , Microbioma Gastrointestinal , Microbiota , Cães , Feminino , Animais , Gatos , Metronidazol/farmacologia , Metronidazol/análise , Medicamentos Biossimilares/farmacologia , Ácidos e Sais Biliares , Leite/química , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/farmacologia , Fezes/química , Antibacterianos/farmacologia , Imunoglobulinas , Oligossacarídeos/farmacologia , Oligossacarídeos/análise , Ração Animal/análise
2.
J Anim Sci ; 99(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33454743

RESUMO

Milk oligosaccharides (MO) are bioactive compounds in mammalian milk that provide health benefits to neonates beyond essential nutrients. GNU100, a novel animal MO biosimilar, was recently tested in vitro, with results showing beneficial shifts in microbiota and increased short-chain fatty acid (SCFA) production, but other effects of GNU100 were unknown. Three studies were conducted to evaluate the safety, palatability, and gastrointestinal (GI) tolerance of GNU100. In study 1, the mutagenic potential of GNU100 was tested using a bacterial reverse mutation assay and a mammalian cell micronucleus test. In study 2, palatability was assessed by comparing diets containing 0% vs. 1% GNU100 in 20 adult dogs. In study 3, 32 adult dogs were used in a completely randomized design to assess the safety and GI tolerance of GNU100 and explore utility. Following a 2-wk baseline, dogs were assigned to one of four treatments and fed for 26 wk: 0%, 0.5%, 1%, and 1.5% GNU100. On weeks 2, 4, and 26, fresh fecal samples were collected to measure stool quality, immunoglobulin A, and calprotectin, and blood samples were collected to measure serum chemistry, inflammatory markers, and hematology. On weeks 2 and 4, fresh fecal samples were collected to measure metabolites and microbiota. On week 4, total feces were collected to assess apparent total tract macronutrient digestibility. Although revertant numbers were greater compared with the solvent control in tester strain WP2uvrA(pKM101) in the presence of metabolic activation (S9) in the initial experiment, they remained below the threshold for a positive mutagenic response in follow-up confirmatory tests, supporting that GNU100 is not mutagenic. Similarly, no cytotoxicity or chromosome damage was observed in the cell micronucleus test. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05; 3.6:1 consumption ratio) over the control. In study 3, all dogs were healthy and had no signs of GI intolerance or illness. All diets were well accepted, and food intake, fecal characteristics, metabolite concentrations, and macronutrient digestibilities were not altered. GNU100 modulated fecal microbiota, increasing evenness and Catenibacterium, Megamonas, and Prevotella (SCFA producers) and reducing Collinsella. Overall, the results suggest that GNU100 is palatable and well-tolerated, causes no genotoxicity or adverse effects on health, and beneficially shifts the fecal microbiota, supporting the safety of GNU100 for the inclusion in canine diets.


Assuntos
Medicamentos Biossimilares , Microbiota , Ração Animal/análise , Animais , Dieta/veterinária , Digestão , Cães , Fezes , Leite , Nutrientes , Oligossacarídeos
3.
J Anim Sci ; 99(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320182

RESUMO

GNU100 is a novel animal milk oligosaccharide (AMO) biosimilar. In a recent in vitro fermentation study, GNU100 was shown to be fermentable by feline gastrointestinal microbiota and lead to increased short-chain fatty acid production. Our objectives herein were to evaluate the palatability, safety, and gastrointestinal tolerance of GNU100 in healthy adult cats. Exploratory end-points were measured to assess utility. In study 1, 20 adult cats were used to test the palatability of diets containing 0% or 1% GNU100. In study 2, 32 (mean age = 1.9 yr; mean body weight = 4.6 kg) male (n = 12) and female (n = 20) adult cats were used in a completely randomized design. After a 2-wk baseline, cats were assigned to one of the following treatment groups and fed for 26 wk: control (CT, no GNU100), low dose (LD, 0.5% GNU100), medium dose (MD, 1.0% GNU100), and high dose (HD, 1.5% GNU100). On weeks 2, 4, and 26, fresh fecal samples were collected for the measurement of stool quality and immune and inflammatory markers and on weeks 2 and 4 for microbiota and metabolites. On week 4, total feces were collected to measure apparent total tract macronutrient digestibility. On weeks 2, 4, and 26, blood samples were collected for serum chemistry, hematology, and inflammatory marker measurement. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05), with GNU100 having a 17.6:1 consumption ratio compared with control. In the long-term study, all cats remained healthy, without any signs of gastrointestinal intolerance or illness. All diets were well accepted, resulting in similar (P > 0.05) food intake, fecal characteristics, immunoglobulin A, and calprotectin, and dry matter, organic matter, fat, and crude protein digestibilities. Fecal butyrate was greater (P = 0.02) in cats fed HD than cats fed LD or MD. Fecal indole was lower (P = 0.02) in cats fed HD than cats fed LD. Cats fed CT had a higher (P = 0.003) relative abundance of Actinobacteria than cats fed LD. The relative abundance of Peptococcus was impacted by diet and time. At 4 wk, Campylobacter was lower in fecal samples of cats fed HD. Overall, the data suggest that dietary GNU100 supplementation was highly palatable, well tolerated, did not cause detrimental effects on fecal quality or nutrient digestibility, increased fecal butyrate concentrations, and reduced fecal indole concentrations, supporting the safety of GNU100 for inclusion in feline diets and suggesting potential benefits on gastrointestinal health of cats.


Assuntos
Medicamentos Biossimilares , Microbiota , Ração Animal/análise , Animais , Gatos , Dieta/veterinária , Digestão , Fezes , Feminino , Masculino , Leite , Nutrientes , Oligossacarídeos
4.
J Anim Sci ; 98(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845316

RESUMO

Milk oligosaccharides (MO) confer multiple potential physiological benefits, such as the selective growth promotion of beneficial microbiota, inhibition of enteric pathogen growth and adhesion to enterocytes, maturation of the gut mucosal barrier, and modulation of the gastrointestinal immune system. This study was conducted to determine the fermentation potential of GNU100, an animal MO biosimilar, in an in vitro system using healthy canine and feline fecal inocula. Single feline and single canine fecal samples were used to inoculate a batch fermentation system. Tubes containing a blank control (BNC), GNU100 at 0.5% (5 g/L; GNU1), or GNU100 at 1.0% (10 g/L; GNU2) were incubated for 48 h. Gas pressure, pH, lactate, short-chain fatty acids (SCFA; acetate, propionate, and butyrate), and branched-chain fatty acids (BCFA; isobutyrate, isovalerate, and valerate) were measured after 6, 24, and 48 h. Ammonium and microbiota (total bacteria by flow cytometry and Pet-16Seq; Lactobacillus and Bifidobacterium by quantitative polymerase chain reaction ) were measured after 24 and 48 h. Data were analyzed using the Mixed Models procedure of SAS. Substrates were considered to be a fixed effect and replicates considered to be a random effect. Tukey's multiple comparison analysis was used to compare least squares means, with differences considered significant with P < 0.05. In feline and canine incubations, SCFA increases were greater (P < 0.0001) in GNU100 compared with BNC, with acetate making up the largest SCFA proportion (P < 0.0001). GNU100 cultures led to greater increases (P < 0.0001) in lactate and ammonium than BNC in the feline incubations. GNU100 cultures led to greater increases (P < 0.0001) in ammonium than BNC in canine incubations and greater increases (P < 0.0001) in BCFA than BNC in feline incubations. Pet-16Seq microbial profiles from the feline and canine fecal incubations exhibited a modulation after GNU100 fermentation, with a reduction of the genera Escherichia/Shigella and Salmonella. In feline incubations, Bifidobacterium populations had greater increases (P < 0.0001) in GNU100 than BNC. In feline incubations, Lactobacillus populations had greater increases (P = 0.01) in GNU100 than BNC, with GNU1 leading to greater increases (P = 0.02) in Lactobacillus than BNC tubes in canine incubations. Overall, this study demonstrated that GNU100 was fermented in an in vitro fermentation system inoculated with canine and feline microbiota, resulting in the growth of beneficial bacteria and the production of SCFA, BCFA, and ammonium.


Assuntos
Bactérias/efeitos dos fármacos , Medicamentos Biossimilares/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Leite/química , Oligossacarídeos/farmacologia , Animais , Bactérias/crescimento & desenvolvimento , Gatos , Cães , Fezes/microbiologia , Fermentação , Trato Gastrointestinal/metabolismo , Masculino , Leite/metabolismo
5.
J Clin Microbiol ; 52(3): 987-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403299

RESUMO

Thirty-two carbapenem-resistant Klebsiella pneumoniae isolates, representative of different resistance mechanisms and clonal lineages, were analyzed with the Pathogenica HAI BioDetection system, based on targeted next-generation sequencing (NGS) technology. With most strains, the system simultaneously yielded comprehensive information on relevant ß-lactam resistance determinants and accurate discrimination of clonal lineages, in a shorter time frame and in a less labor-intensive manner than currently available methods for molecular epidemiology analysis. Results supported the usefulness of targeted NGS-based technologies for similar applications.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Klebsiella pneumoniae/genética , Técnicas de Diagnóstico Molecular/métodos , Tipagem Molecular/métodos , Resistência beta-Lactâmica , Humanos , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA