Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JNMA J Nepal Med Assoc ; 62(269): 27-29, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38410012

RESUMO

Introduction: Minimally invasive image-guided percutaneous core needle biopsy can obtain tissue samples for diagnosis of subpleural lung cancer, which is crucial for the correct management of lung lesions. Common complications of lung biopsy include pneumothorax, parenchymal haemorrhage and haemoptysis. The study aimed to determine the prevalence of ultrasound-guided biopsy among patients with lung lesions undergoing procedures in interventional radiology of a tertiary care centre. Methods: A descriptive cross-sectional study was performed in the Department of Radiology and Imaging from 1 August 2018 to 30 September 2019 after obtaining ethical approval from the Institutional Review Committee. USG-guided biopsy of peripheral lung lesions was performed with an 18 gauge semiautomatic biopsy instrument and a 17 gauge coaxial needle. A convenience sampling method was used. The point estimate was calculated at a 95% Confidence Interval. Results: Among 188 biopsy of lung lesions, ultrasound-guided biopsies were performed in 28 (14.89%) (9.80-19.98, 95% Confidence Interval). Conclusions: The prevalence of ultrasound guided biopsy among lung lesions is lower than other studies done in similar settings. Keywords: biopsy; interventional radiology; lung neoplasms; prevalence.


Assuntos
Neoplasias Pulmonares , Radiologia Intervencionista , Humanos , Centros de Atenção Terciária , Estudos Transversais , Neoplasias Pulmonares/patologia , Biópsia Guiada por Imagem/métodos , Ultrassonografia de Intervenção/métodos , Pulmão/diagnóstico por imagem , Estudos Retrospectivos
2.
Ecol Evol ; 14(2): e10924, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38322006

RESUMO

Information on prey selection and the diet of the leopard (Panthera pardus fusca) is essential for leopard conservation. We conducted an investigation into the prey species and the proportion of each species in the leopard's diet in a human-dominated mid-hill region of Nepal. The analysis of 96 leopard scats collected between August 2020 and March 2021 revealed that leopards consumed 15 prey species, including small- and medium-sized mammals and livestock. In addition to these prey species, we also found plastic materials, bird feathers, and some unidentified items in the leopard scats. Wild ungulates (such as barking deer, Muntiacus muntjak and wild boar, Sus scrofa) constituted only 10% of the biomass in the scats, while livestock contributed 27%, and other wild prey contributed 50%. Among all species, domestic goats had the highest relative biomass in the scats, followed by the jungle cat (Felis chaus), domestic dog (Canis familiaris), and large Indian civet (Viverra zibetha). Similarly, the Indian hare (Lepus nigricollis) had the highest proportion of relative individuals present in the scat samples, followed by the jungle cat and the large Indian civet. A lower proportion of biomass from wild ungulates in the leopard's diet and a higher dependency of the leopard on domestic prey and other wild prey indicate a shortage of medium-sized wild prey, such as barking deer and wild boar, in leopard habitats. Therefore, the conservation of wild prey species, especially medium-sized prey, is crucial for reducing the leopard's dependence on livestock and mitigating human-leopard conflicts in the future.

3.
Ecol Evol ; 14(2): e10949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38371859

RESUMO

Himalayan Musk deer, Moschus chrysogaster is widely distributed but one of the least studied species in Nepal. In this study, we compiled a total of 429 current presence points of direct observation of the species, pellets droppings, and hoofmarks based on field-based surveys during 2018-2021 and periodic data held by the Department of National Park and Wildlife Conservation. We developed the species distribution model using an ensemble modeling approach. We used a combination of bioclimatic, anthropogenic, topographic, and vegetation-related variables to predict the current suitable habitat for Himalayan Musk deer in Nepal. A total of 16 predictor variables were used for habitat suitability modeling after the multicollinearity test. The study shows that the 6973.76 km2 (5%) area of Nepal is highly suitable and 8387.11 km2 (6%) is moderately suitable for HMD. The distribution of HMD shows mainly by precipitation seasonality, precipitation of the warmest quarter, temperature ranges, distance to water bodies, anthropogenic variables, and land use and land cover change (LULC). The probability of occurrence is less in habitats with low forest cover. The response curves indicate that the probability of occurrence of HMD decreases with an increase in precipitation seasonality and remains constant with an increase in precipitation of the warmest quarter. Thus, the fortune of the species distribution will be limited by anthropogenic factors like poaching, hunting, habitat fragmentation and habitat degradation, and long-term forces of climate change.

4.
PeerJ ; 11: e16516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107575

RESUMO

Livestock depredation by leopards is a pervasive issue across many Asian and African range countries, particularly in and around protected areas. Developing effective conflict mitigation strategies requires understanding the landscape features influencing livestock depredation. In this study, we investigated predictors associated with livestock depredation by leopards using 274 cases of leopard attacks on livestock that occurred between 2017 and 2020 in the Annapurna Conservation Area, Nepal. We also examined how livestock predation by leopards varied depending on the species, season, and time. A generalized linear model with binary logistic regression was used to test the statistical significance of variables associated with the presence and absence of conflict sites. The results revealed that the area of forest, agricultural land, length of rivers, slope, proximity to settlements and protected areas, and elevation significantly predicted the probability of leopard attacks on livestock. We also observed a significant increase in the incidence of leopard predation on livestock with decreasing slopes and rising elevations. The areas near human settlements and the protected areas faced a higher risk of leopard predation. The incidence of leopard predation on livestock varied significantly depending on the livestock species, season, and time. Goats were the most highly predated livestock, followed by sheep, cow/ox, and buffalo. A total of 289.11 km2 (or around 5% of the research area) was deemed to be at high risk for leopard predation on livestock. This study's comprehensive understanding of human-leopard conflicts provides valuable insights for planning and implementing measures to reduce damage caused by leopard populations throughout their range.


Assuntos
Gado , Panthera , Feminino , Bovinos , Animais , Humanos , Ovinos , Ecossistema , Nepal , Conservação dos Recursos Naturais , Cabras
5.
Heliyon ; 9(6): e16639, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274642

RESUMO

Over the last few years, intensifying human impact and the deterioration of natural habitats have severely restricted the global distribution of large herbivores. Rucervus duvaucelii, commonly recognized as the swamp deer, is a habitat-specialist endemic large herbivore of the Indian Subcontinent. It is classified as vulnerable by the IUCN and listed in CITES Appendix I due to a steep decline in its population, which is primarily due to anthropogenic causes. In Nepal, the last remaining population of this species is confined to limited pocket areas within the western Terai Arc Landscape. We explored potential habitat for swamp deer across this landscape using species distribution modelling through the MaxEnt algorithm by using 173 field-verified presence points alongside six anthropogenic, four topographic, and four vegetation-related variables. Our study found that out of the total study area (9207 km2), only 6% (590 km2) was suitable for swamp deer. Approximately 45% of suitable habitat was incorporated within protected areas, with Shuklaphanta National Park harboring the largest habitat patch. The suitability of habitat was discovered to be positively associated with low-elevation areas, areas near water sources, and areas far from settlements, implying the need to conserve water sources and minimize the extension of anthropogenic pressure for their long-term conservation. Additionally, we suggest the implications of a swamp deer-centric conservation strategy, with an emphasis on increasing connectivity through the corridors and landscape-level population connectivity through trans-boundary conservation initiatives between Nepal and India. Moreover, considering large herbivores' high vulnerability to extinction, similar researche incorporating anthropogenic factors is of the utmost importance to produce vital information on habitat suitability for conserving other regionally and globally endemic, habitat-specialized herbivores.

6.
Animals (Basel) ; 13(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36899794

RESUMO

Rapidly changing environmental conditions (bioclimatic, anthropogenic, topographic, and vegetation-related variables) are likely to alter the spatial distribution of flora and fauna. To understand the influence of environmental variables on the Blue bull's distribution and to identify potential conflict zones, the habitat suitability analysis of the Blue bull was performed using ensemble modeling. We modelled the distribution of the Blue bull using an extensive database on the current distribution of the Blue bull and selected 15 ecologically significant environmental variables. We used ten species distribution modeling algorithms available in the BIOMOD2 R package. Among the ten algorithms, the Random Forest, Maxent, and Generalized linear model had the highest mean true skill statistics scores, ensuring better model performance, and were considered for further analysis. We found that 22,462.57 km2 (15.26%) of Nepal is suitable for the Blue bull. Slope, precipitation seasonality, and distance to the road are the environmental variables contributing the most to the distribution of Blue bull. Of the total predicted suitable habitats, 86% lies outside protected areas and 55% overlaps with agricultural land. Thus, we recommend that the future conservation initiatives including appropriate conflict mitigation measures should be prioritized equally in both protected areas and outside protected areas to ensure the species' survival in the region.

7.
Heliyon ; 9(1): e12807, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660456

RESUMO

Climate change is projected to create alterations in species distributions over the planet. The common leopard (Panthera pardus) serves an important ecological function as a member of the big carnivore guild, but little is known about how climate change may affect their distribution. In this study, we use MaxEnt to simulate the geographic distributions by illustrating potential present and future ranges of common leopard by utilizing presence records alongside important topographic and bioclimatic variables based on two shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5) scenarios. The goals of this study was to look into possible distribution ranges of common leopards due to climate change, as well as explore the implications for conservation and potential conflict with humans. At present, 4% of Nepal was found to be highly suitable for common leopards, 43% suitable, 19% marginally suitable, and 34% unsuitable. A large portion of the climatically suitable habitat was confined to non-protected areas, and the majority of the highly suitable habitat was encompassed by forest land, followed by agricultural areas. Elevation, mean temperature of driest quarter, annual precipitation, and precipitation seasonality were the variables influencing habitat suitability for the common leopard. A significant increase in marginally suitable habitat was observed in the high mountain region, indicating a shift of habitat in upper elevation areas due to the effects of climate change. We recommend timely management of these potential habitats to expand the range of this vulnerable species. At the same time, a combination of expanding new habitats and poor management practices could escalate human-leopard conflict. Therefore, further study on the impact of climate change on the distribution of prey species and proper habitat management techniques should be prioritized to mitigate conflicts.

8.
Ecol Evol ; 12(10): e9381, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36225840

RESUMO

Wildlife conservation in human-dominated landscapes faces increased challenges due to rising conflicts between humans and wildlife. We investigated the human and wildlife loss rates due to human-wildlife conflict between 2000 and 2020 in Nepal. We concentrated on Asian elephant (Elephas maximus), greater one-horned rhino (Rhinoceros unicornis), tiger (Panthera tigirs), and leopard (Panthera pardus) mortality, as well as human mortality caused by these species. Over the 21-year period, we recorded 1139 cases of wildlife mortality and 887 cases of human mortality. Leopard mortality was the highest, followed by that of greater one-horned rhinos, tigers, and Asian elephants. Overall, the rate of wildlife mortality has been increasing over the years. Asian elephants were found to be more responsible for crop damage than greater one-horned rhinos, while leopards were found to be more responsible for livestock depredation than tigers. The generalized linear model indicated that the mortality of wildlife in the districts is best predicted by the additive effect of human mortality, the proportion of agricultural land, and the literacy rate of the districts. Retaliatory wildlife mortality was the most challenging issue for wildlife conservation, especially for the large mammals. Findings from this study are important for mitigation of human-wildlife conflicts, controlling retaliatory killing, and conserving these threatened large mammals.

9.
J Ethnobiol Ethnomed ; 18(1): 34, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436921

RESUMO

BACKGROUND: The risk of losing traditional knowledge of medicinal plants and their use and conservation is very high. Documenting knowledge on distribution and use of medicinal plants by different ethnic groups and at spatial scale on a single platform is important from a conservation planning and management perspective. The sustainable use, continuous practice, and safeguarding of traditional knowledge are essential. Communication of such knowledge among scientists and policy makers at local and global level is equally important, as the available information at present is limited and scattered in Nepal. METHODS: In this paper, we aimed to address these shortcomings by cataloguing medicinal plants used by indigenous ethnic groups in Nepal through a systematic review of over 275 pertinent publications published between 1975 and July 2021. The review was complemented by field visits made in 21 districts. We determined the ethnomedicinal plants hotspots across the country and depicted them in heatmaps. RESULTS: The heatmaps show spatial hotspots and sites of poor ethnomedicinal plant use documentation, which is useful for evaluating the interaction of geographical and ethnobotanical variables. Mid-hills and mountainous areas of Nepal hold the highest number of medicinal plant species in use, which could be possibly associated with the presence of higher human population and diverse ethnic groups in these areas. CONCLUSION: Given the increasing concern about losing medicinal plants due to changing ecological, social, and climatic conditions, the results of this paper may be important for better understanding of how medicinal plants in use are distributed across the country and often linked to specific ethnic groups.


Assuntos
Plantas Medicinais , Etnobotânica , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Medicina Tradicional/métodos , Nepal , Fitoterapia/métodos
10.
Ecol Evol ; 12(1): e8491, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136552

RESUMO

Anthropogenic pressures in human-dominated landscapes often contribute to wildlife mortality. Carnivores are especially vulnerable to human-induced mortality due to the perceived threat to livestock and humans. Despite having widespread conservation implications, carnivore mortality data have been largely underutilized within Nepal. This study utilized Maxent to identify high-risk areas and explore the contribution of habitat attributes associated with carnivore mortality using the casualty database within the Gandaki province of central Nepal. We categorized the risk to carnivore species in three taxonomic groups, Felid, Viverridae, and Herpestidae, and identified a 3704-km2 area within the province at high risk for carnivore casualty. The middle mountains were the riskiest physiographic zone, and the Annapurna Conservation Area represented the largest risk zone among the four protected areas. Agricultural land was the most problematic area in terms of carnivore casualty. The human population was positively associated with high-risk areas and the number of casualties, whereas protected area cover had a negative association. This study identified that the common leopard was at the highest risk of mortality and therefore would benefit from the implementation of an action plan and species-specific conservation strategies, especially within identified high-risk zones. An expansion of protected areas in the middle mountain region would serve to greatly reduce carnivore casualty. Species distribution modeling can be further used with national-level spatial and temporal mortality data to identify the most prominent casualty times and pinpoint potential casualty locations throughout the country.

12.
J Ethnobiol Ethnomed ; 17(1): 59, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656121

RESUMO

BACKGROUND: There are handful hypothesis-driven ethnobotanical studies in Nepal. In this study, we tested the non-random medicinal plant selection hypothesis using national- and community-level datasets through three different types of regression: linear model with raw data, linear model with log-transformed data and negative binomial model. METHODS: For each of these model, we identified over-utilized families as those with highest positive Studentized residuals and underutilized families with highest negative Studentized residuals. The national-level data were collected from online databases and available literature while the community-level data were collected from Baitadi and Darchula districts. RESULTS: Both dataset showed larger variance (national dataset mean 6.51 < variance 156.31, community dataset mean 1.16 < variance 2.38). All three types of regression were important to determine the medicinal plant species selection and use differences among the total plant families, although negative binomial regression was most useful. The negative binomial showed a positive nonlinear relationship between total plant family size and number of medicinal species per family for the national dataset (ß1 = 0.0160 ± 0.0009, Z1 = 16.59, p < 0.00001, AIC1 = 1181), and with similar slope and stronger performance for the community dataset (ß2 = 0.1747 ± 0.0199, Z2 = 8.76, p < 0.00001, AIC2 = 270.78). Moraceae and Euphorbiaceae were found over-utilized while Rosaceae, Cyperaceae and Caryophyllaceae were recorded as underutilized. CONCLUSIONS: As our datasets showed larger variance, negative binomial regression was found the most useful for testing non-random medicinal plant selection hypothesis. The predictions made by non-random selection of medicinal plants hypothesis holds true for community-level studies. The identification of over-utilized families is the first step toward sustainable conservation of plant resources and it provides a baseline for pharmacological research that might be leading to drug discovery.


Assuntos
Etnobotânica , Medicina Tradicional , Plantas Medicinais , Humanos , Povos Indígenas , Nepal , Fitoterapia
13.
New Phytol ; 224(3): 1381-1393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442304

RESUMO

Gynodioecy is a sexual system in which females and hermaphrodites co-occur. In most gynodioecious angiosperms, sex is determined by an interaction between mitochondrial male-sterility genes (CMS) that arise via recombination and nuclear restorer alleles that evolve to suppress them. In theory, gynodioecy occurs when multiple CMS types are maintained at equilibrium frequencies by balancing selection. However, some gynodioecious populations contain very high frequencies of females. High female frequencies are not expected under balancing selection, but could be explained by the repeated introduction of novel CMS types. To test for balancing selection and/or the repeated introduction of novel CMS, we characterised cytoplasmic haplotypes from 61 populations of Lobelia siphilitica that vary widely in female frequency. We confirmed that mitotype diversity and female frequency were positively correlated across populations, consistent with balancing selection. However, while low-female populations hosted mostly common mitotypes, high-female populations and female plants hosted mostly rare, recombinant mitotypes likely to carry novel CMS types. Our results suggest that balancing selection maintains established CMS types across this species, but extreme female frequencies result from frequent invasion by novel CMS types. We conclude that balancing selection alone cannot account for extreme population sex-ratio variation within a gynodioecious species.


Assuntos
Lobelia/genética , Mitocôndrias/genética , Recombinação Genética , Seleção Genética , Sequência de Bases , Bases de Dados Genéticas , Loci Gênicos , Genoma Mitocondrial , Haplótipos/genética , Desequilíbrio de Ligação/genética , Plastídeos/genética , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA