Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 12001, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099817

RESUMO

Staphylococcus epidermidis (S. epidermidis) ATCC 12228 was incubated with 2% polyethylene glycol (PEG)-8 Laurate to yield electricity which was measured by a voltage difference between electrodes. Production of electron was validated by a Ferrozine assay. The anti-Cutibacterium acnes (C. acnes) activity of electrogenic S. epidermidis was assessed in vitro and in vivo. The voltage change (~ 4.4 mV) reached a peak 60 min after pipetting S. epidermidis plus 2% PEG-8 Laurate onto anodes. The electricity produced by S. epidermidis caused significant growth attenuation and cell lysis of C. acnes. Intradermal injection of C. acnes and S. epidermidis plus PEG-8 Laurate into the mouse ear considerably suppressed the growth of C. acnes. This suppressive effect was noticeably reversed when cyclophilin A of S. epidermidis was inhibited, indicating the essential role of cyclophilin A in electricity production of S. epidermidis against C. acnes. In summary, we demonstrate for the first time that skin S. epidermidis, in the presence of PEG-8 Laurate, can mediate cyclophilin A to elicit an electrical current that has anti-C. acnes effects. Electricity generated by S. epidermidis may confer immediate innate immunity in acne lesions to rein in the overgrowth of C. acnes at the onset of acne vulgaris.


Assuntos
Acne Vulgar/terapia , Antibiose/genética , Proteínas de Bactérias/genética , Ciclofilina A/genética , Propionibacteriaceae/patogenicidade , Staphylococcus epidermidis/efeitos dos fármacos , Acne Vulgar/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Técnicas de Cocultura , Meios de Cultura/química , Meios de Cultura/farmacologia , Ciclofilina A/metabolismo , Modelos Animais de Doenças , Orelha/microbiologia , Eletricidade , Eletrodos , Feminino , Expressão Gênica , Lauratos/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Polietilenoglicóis/farmacologia , Propionibacteriaceae/crescimento & desenvolvimento , Pele/microbiologia , Staphylococcus epidermidis/fisiologia , Tensoativos/farmacologia
2.
Sci Rep ; 10(1): 21916, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318546

RESUMO

Although several electrogenic bacteria have been identified, the physiological effect of electricity generated by bacteria on host health remains elusive. We found that probiotic Leuconostoc mesenteroides (L. mesenteroides) can metabolize linoleic acid to yield electricity via an intracellular cyclophilin A-dependent pathway. Inhibition of cyclophilin A significantly abolished bacterial electricity and lowered the adhesion of L. mesenteroides to the human gut epithelial cell line. Butyrate from L. mesenteroides in the presence of linoleic acid were detectable and mediated free fatty acid receptor 2 (Ffar2) to reduce the lipid contents in differentiating 3T3-L1 adipocytes. Oral administration of L. mesenteroides plus linoleic acid remarkably reduced high-fat-diet (HFD)-induced formation of 4-hydroxy-2-nonenal (4-HNE), a reactive oxygen species (ROS) biomarker, and decreased abdominal fat mass in mice. The reduction of 4-HNE and abdominal fat mass was reversed when cyclophilin A inhibitor-pretreated bacteria were administered to mice. Our studies present a novel mechanism of reducing abdominal fat mass by electrogenic L. mesenteroides which may yield electrons to enhance colonization and sustain high amounts of butyrate to limit ROS during adipocyte differentiation.


Assuntos
Gordura Abdominal/metabolismo , Butiratos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Leuconostoc mesenteroides/metabolismo , Ácido Linoleico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR
3.
Sci Rep ; 10(1): 21585, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299009

RESUMO

Repurposing existing compounds for new indications may facilitate the discovery of skin prebiotics which have not been well defined. Four compounds that have been registered by the International Nomenclature of Cosmetic Ingredients (INCI) were included to study their abilities to induce the fermentation of Staphylococcus epidermidis (S. epidermidis), a bacterial species abundant in the human skin. Liquid coco-caprylate/caprate (LCC), originally used as an emollient, effectively initiated the fermentation of S. epidermidis ATCC 12228, produced short-chain fatty acids (SCFAs), and provoked robust electricity. Application of LCC plus electrogenic S. epidermidis ATCC 12228 on mouse skin significantly reduced ultraviolet B (UV-B)-induced injuries which were evaluated by the formation of 4-hydroxynonenal (4-HNE), cyclobutane pyrimidine dimers (CPD), and skin lesions. A S. epidermidis S2 isolate with low expressions of genes encoding pyruvate dehydrogenase (pdh), and phosphate acetyltransferase (pta) was found to be poorly electrogenic. The protective action of electrogenic S. epidermidis against UV-B-induced skin injuries was considerably suppressed when mouse skin was applied with LCC in combination with a poorly electrogenic S. epidermidis S2 isolate. Exploring new indication of LCC for promoting S. epidermidis against UV-B provided an example of repurposing INCI-registered compounds as skin prebiotics.


Assuntos
Prebióticos/administração & dosagem , Probióticos , Pele/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Aldeídos/metabolismo , Animais , Reposicionamento de Medicamentos , Camundongos , Dímeros de Pirimidina/metabolismo , Pele/metabolismo , Pele/microbiologia , Pele/efeitos da radiação , Raios Ultravioleta
4.
Microorganisms ; 8(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708352

RESUMO

Bacteria that use electron transport proteins in the membrane to produce electricity in the gut microbiome have been identified recently. However, the identification of electrogenic bacteria in the skin microbiome is almost completely unexplored. Using a ferric iron-based ferrozine assay, we have identified the skin Staphylococcus epidermidis (S. epidermidis) as an electrogenic bacterial strain. Glycerol fermentation was essential for the electricity production of S. epidermidis since the inhibition of fermentation by 5-methyl furfural (5-MF) significantly diminished the bacterial electricity measured by voltage changes in a microbial fuel cell (MFC). A small-scale chamber with both anode and cathode was fabricated in order to study the effect of ultraviolet-B (UV-B) on electricity production and bacterial resistance to UV-B. Although UV-B lowered bacterial electricity, a prolonged incubation of S. epidermidis in the presence of glycerol promoted fermentation and elicited higher electricity to suppress the effect of UV-B. Furthermore, the addition of glycerol into S. epidermidis enhanced bacterial resistance to UV-B. Electricity produced by human skin commensal bacteria may be used as a dynamic biomarker to reflect the UV radiation in real-time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA