Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38616763

RESUMO

Alzheimer's disease (AD) is a multifactorial disorder resulting from the complex interaction between genetic, epigenetic, and environmental factors. It represents an impending epidemic and lacks effective pharmacological interventions. The emergence of high throughput sequencing techniques and comprehensive genome evaluation has uncovered a diverse spectrum of non-- coding RNA (ncRNA) families. ncRNAs are the critical modulators of an eclectic array of biological processes and are now transpiring as imperative players in diagnosing and treating various diseases, including neurodegenerative disorders. Several ncRNAs are explicitly augmented in the brain, wherein they potentially regulate cognitive abilities and other functions of the central nervous system. Growing evidence suggests the substantial role of ncRNAs as modulators of tau phosphorylation, Aß production, neuroinflammation, and neuronal survival. It indicates their therapeutic relevance as a biomarker and druggable targets against AD. The current review summarizes the existing literature on the functional significance of ncRNAs in AD pathogenesis and its imminent implications in clinics.

2.
Toxicology ; 504: 153791, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555994

RESUMO

Bisphenol A (BPA) is a synthetic chemical widely used as a monomer for producing polycarbonate plastics. The present investigation employed an in-silico approach to identify BPA-responsive genes and comprehend the biological functions affected using in vitro studies. A Comparative Toxicogenomics Database search identified 29 BPA-responsive genes in cervical cancer (CC). Twenty-nine genes were screened using published datasets, and thirteen of those showed differential expression between normal and CC samples. Protein-Protein Interaction Networks (PPIN) analysis identified BIRC5, CASP8, CCND1, EGFR, FGFR3, MTOR, VEGFA, DOC2B, WNT5A, and YY1 as hub genes. KM-based survival analysis identified that CCND, EGFR, VEGFA, FGFR3, DOC2B, and YY1 might affect CC patient survival. SiHa and CaSki cell proliferation, migration, and invasion were all considerably accelerated by BPA exposure. Changes in cell morphology, remodeling of the actin cytoskeleton, increased number and length of filopodia, elevated intracellular reactive oxygen species and calcium, and lipid droplet accumulation were noted upon BPA exposure. BPA treatment upregulated the expression of epithelial to mesenchymal transition pathway members and enhanced the nuclear translocation of CTNNB1. We showed that the enhanced migration and nuclear translocation of CTNNB1 upon BPA exposure is a calcium-dependent process. The present study identified potential BPA-responsive genes and provided novel insights into the biological effects and mechanisms affected by BPA in CC. Our study raises concern over the use of BPA.


Assuntos
Compostos Benzidrílicos , Movimento Celular , Proliferação de Células , Fenóis , Neoplasias do Colo do Útero , Humanos , Fenóis/toxicidade , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Compostos Benzidrílicos/toxicidade , Feminino , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Simulação por Computador , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Mapas de Interação de Proteínas , Transição Epitelial-Mesenquimal/efeitos dos fármacos
3.
Mol Oncol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38400534

RESUMO

Cervical cancer (CC) is a key contributor to cancer-related mortality in several countries. The identification of molecular markers and the underlying mechanism may help improve CC management. We studied the regulation and biological function of the chromosome 14 microRNA cluster (C14MC; miR-379/miR-656) in CC. Most C14MC members exhibited considerably lower expression in CC tissues and cell lines in The Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma patient cohorts. Bisulfite Sanger sequencing revealed hypermethylation of the C14MC promoter in CC tissues and cell lines. 5-aza-2 deoxy cytidine treatment reactivated expression of the C14MC members. We demonstrated that C14MC is a methylation-regulated miRNA cluster via artificial methylation and luciferase reporter assays. C14MC downregulation correlated with poor overall survival and may promote metastasis. C14MC activation via the lentiviral-based CRISPRa approach inhibited growth, proliferation, migration, and invasion; enhanced G2/M arrest; and induced senescence. Post-transcriptional regulatory network analysis of C14MC transcriptomic data revealed enrichment of key cancer-related pathways, such as metabolism, the cell cycle, and phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Reduced cell proliferation, growth, migration, invasion, and senescence correlated with the downregulation of active AKT, MYC, and cyclin E1 (CCNE1) and the overexpression of p16, p21, and p27. We showed that C14MC miRNA activation increases reactive oxygen species (ROS) levels, intracellular Ca2+ levels, and lipid peroxidation rates, and inhibits epithelial-mesenchymal transition (EMT). C14MC targets pyruvate dehydrogenase kinase-3 (PDK3) according to the luciferase reporter assay. PDK3 is overexpressed in CC and is inversely correlated with C14MC. Both miR-494-mimic transfection and C14MC activation inhibited PDK3 expression. Reduced glucose uptake and lactate production, and upregulation of PDK3 upon C14MC activation suggest the potential role of these proteins in metabolic reprogramming. Finally, we showed that C14MC activation may inhibit EMT signaling. Thus, C14MC is a tumor-suppressive and methylation-regulated miRNA cluster in CC. Reactivation of C14MC can be useful in the management of CC.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38062297

RESUMO

The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.

5.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119505, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37286138

RESUMO

Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.


Assuntos
Compostos Benzidrílicos , Estrogênios , Humanos , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Mitocôndrias
6.
Front Mol Biosci ; 10: 1131433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025658

RESUMO

Introduction: Forkhead (FOX) transcription factors are involved in cell cycle control, cellular differentiation, maintenance of tissues, and aging. Mutation or aberrant expression of FOX proteins is associated with developmental disorders and cancers. FOXM1, an oncogenic transcription factor, is a promoter of cell proliferation and accelerated development of breast adenocarcinomas, squamous carcinoma of the head, neck, and cervix, and nasopharyngeal carcinoma. High FOXM1 expression is correlated with chemoresistance in patients treated with doxorubicin and Epirubicin by enhancing the DNA repair in breast cancer cells. Method: miRNA-seq identified downregulation of miR-4521 in breast cancer cell lines. Stable miR-4521 overexpressing breast cancer cell lines (MCF-7, MDA-MB-468) were developed to identify miR-4521 target gene and function in breast cancer. Results: Here, we showed that FOXM1 is a direct target of miR-4521 in breast cancer. Overexpression of miR-4521 significantly downregulated FOXM1 expression in breast cancer cells. FOXM1 regulates cell cycle progression and DNA damage response in breast cancer. We showed that miR-4521 expression leads to increased ROS levels and DNA damage in breast cancer cells. FOXM1 plays a critical role in ROS scavenging and promotes stemness which contributes to drug resistance in breast cancer. We observed that breast cancer cells stably expressing miR-4521 lead to cell cycle arrest, impaired FOXM1 mediated DNA damage response leading to increased cell death in breast cancer cells. Additionally, miR-4521-mediated FOXM1 downregulation perturbs cell proliferation, invasion, cell cycle progression, and epithelial-to-mesenchymal progression (EMT) in breast cancer. Discussion: High FOXM1 expression has been associated with radio and chemoresistance contributing to poor patient survival in multiple cancers, including breast cancer. Our study showed that FOXM1 mediated DNA damage response could be targeted using miR-4521 mimics as a novel therapeutic for breast cancer.

7.
Biochem Genet ; 61(5): 1898-1916, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36879084

RESUMO

The miR-200b/429 located at 1p36 is a highly conserved miRNA cluster emerging as a critical regulator of cervical cancer. Using publicly available miRNA expression data from TCGA and GEO followed by independent validation, we aimed to identify the association between miR-200b/429 expression and cervical cancer. miR-200b/429 cluster was significantly overexpressed in cancer samples compared to normal samples. miR-200b/429 expression did not correlate with patient survival; however, its overexpression correlated with histological type. Protein-protein interaction analysis of 90 target genes of miR-200b/429 identified EZH2, FLT1, IGF2, IRS1, JUN, KDR, SOX2, MYB, ZEB1, and TIMP2 as the top ten hub genes. PI3K-AKT and MAPK signaling pathways emerged as major target pathways of miR-200b/429 and their hub genes. Kaplan-Meier survival analysis showed the expression of seven miR-200b/429 target genes (EZH2, FLT1, IGF2, IRS1, JUN, SOX2, and TIMP2) to influence the overall survival of patients. The miR-200a-3p and miR-200b-5p could help predict cervical cancer with metastatic potential. The cancer hallmark enrichment analysis showed hub genes to promote growth, sustained proliferation, resistance to apoptosis, induction of angiogenesis, activation of invasion, and metastasis, enabling replicative immortality, evading immune destruction, and tumor-promoting inflammation. The drug-gene interaction analysis identified 182 potential drugs to interact with 27 target genes of miR-200b/429 with paclitaxel, doxorubicin, dabrafenib, bortezomib, docetaxel, ABT-199, eribulin, vorinostat, etoposide, and mitoxantrone emerging as the top ten best candidate drugs. Taken together, miR-200b/429 and associated hub genes can be helpful for prognostic application and clinical management of cervical cancer.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Redes Reguladoras de Genes , Neoplasias do Colo do Útero/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica
8.
Free Radic Biol Med ; 201: 1-13, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36913987

RESUMO

Mitochondria are biosynthetic and bioenergetic organelles that regulate many biological processes, including metabolism, oxidative stress, and cell death. Cervical cancer (CC) cells show impairments in mitochondrial structure and function and are linked with cancer progression. DOC2B is a tumor suppressor with anti-proliferative, anti-migratory, anti-invasive, and anti-metastatic function in CC. For the first time, we demonstrated the role of the DOC2B-mitochondrial axis with tumor growth regulatory functions in CC. We used DOC2B overexpression and knockdown model systems to show that DOC2B is localized to mitochondria and induces Ca2+-mediated lipotoxicity. DOC2B expression induced mitochondrial morphological changes with the subsequent reduction in mitochondrial DNA copy number, mitochondrial mass, and mitochondrial membrane potential. Intracellular and mitochondrial Ca2+, intracellular O.-2, and ATP levels were substantially elevated in the presence of DOC2B. DOC2B manipulation reduced glucose uptake, lactate production, and mitochondrial complex-IV activity. The presence of DOC2B significantly reduced the proteins associated with mitochondrial structure and biogenesis with the concomitant activation of AMPK signaling. Augmented lipid peroxidation (LPO) in the presence of DOC2B was a Ca2+-dependent process. Our findings demonstrated that DOC2B promotes lipid accumulation, oxidative stress, and LPO through intracellular Ca2+ overload, which may contribute to mitochondrial dysfunction and tumor-suppressive properties of DOC2B. We propose that the DOC2B-Ca2+-oxidative stress-LPO-mitochondrial axis could be targeted for confining CC. Further, the induction of lipotoxicity in tumor cells by activating DOC2B could serve as a novel therapeutic approach in CC.


Assuntos
Cálcio , Proteínas do Tecido Nervoso , Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Estresse Oxidativo
9.
Biochim Biophys Acta Rev Cancer ; 1878(1): 188840, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403923

RESUMO

Although there has been substantial improvement in the treatment modalities, cancer remains the major cause of fatality worldwide. Metastasis, recurrence, and resistance to oncological therapies are the leading causes of cancer mortality. Epithelial-mesenchymal transition (EMT) is a complex biological process that allows cancer cells to undergo morphological transformation into a mesenchymal phenotype to acquire invasive potential. It encompasses reversible and dynamic ontogenesis by neoplastic cells during metastatic dissemination. Hence, understanding the molecular landscape of EMT is imperative to identify a reliable clinical biomarker to combat metastatic spread. Accumulating evidence reveals the role of HOX (homeobox) cluster-embedded long non-coding RNAs (lncRNAs) in EMT and cancer metastasis. They play a crucial role in the induction of EMT, modulating diverse biological targets. The present review emphasizes the involvement of HOX cluster-embedded lncRNAs in EMT as a molecular sponge, chromatin remodeler, signaling regulator, and immune system modulator. Furthermore, the molecular mechanisms behind therapy resistance and the potential use of novel drugs targeting HOX cluster-embedded lncRNAs in the clinical management of distant metastasis will be discussed.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Genes Homeobox , Transdução de Sinais
10.
Environ Toxicol Pharmacol ; 96: 104010, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36334871

RESUMO

Bisphenol A (BPA) mimics estrogen and consequently suspected to be detrimental to female reproductive system. Biomonitoring confirms the BPA burden in body leading to a complex condition called polycystic ovarian syndrome (PCOS) which is frequently attributed to female infertility. Due to unclear precise molecular pathomechanisms of BPA in PCOS, we intend to examine the molecular mechanisms of the reproductive, endocrine, mitochondrial features, and cellular senescence in BPA-treated rats. We analyzed vaginal smears and ovarian follicles using microscope, assessed sex hormones by ELISA, analyzed BPA target gene expression by semi-quantitative RT-PCR, assessed senescence induction by ß-galactosidase staining and immunofluorescence in BPA-treated rats. Our data showed hormonal imbalance, impaired folliculogenesis, abnormal expression patterns of target genes, CDKN2A overexpression and enhanced ROS levels in BPA-treated rats. This study provides insights on the effects of BPA exposure on ovulatory, hormonal, mitochondrial dysfunction, and senescence that benefit in better understanding of PCOS induced by BPA.


Assuntos
Disruptores Endócrinos , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Disruptores Endócrinos/toxicidade , Compostos Benzidrílicos/toxicidade , Sistema Endócrino , Mitocôndrias , Senescência Celular , Fenótipo
11.
Toxicol Appl Pharmacol ; 457: 116296, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36328110

RESUMO

Phthalates have been extensively used as plasticizers while manufacturing plastic-based consumer products. Estradiol mimicking properties and association studies suggest phthalates may contribute to breast cancer (BC). We performed an in-silico analysis and functional studies to understand the association between phthalate exposure and BC progression. Search for phthalate-responsive genes using the comparative toxicogenomics database identified 20 genes as commonly altered in response to multiple phthalates exposure. Of the 20 genes, 12 were significantly differentially expressed between normal and BC samples. In BC samples, 9 out of 20 genes showed a negative correlation between promoter methylation and its expression. AHR, BAX, BCL2, CAT, ESR2, IL6, and PTGS2 expression differed significantly between metastatic and non-metastatic BC samples. Gene set enrichment analysis identified metabolism, ATP-binding cassette transporters, insulin signaling, and type II diabetes as highly enriched pathways. The diagnostic assessment based on 20 genes expression suggested a sensitivity and a specificity >0.91. The aberrantly expressed phthalate interactive gene influenced the overall survival of BC patients. Drug-gene interaction analysis identified 14 genes and 523 candidate drugs, including 19 BC treatment-approved drugs. Di(2-ethylhexyl) phthlate (DEHP) exposure increased the growth, proliferation, and migration of MCF-7 and MDA-MB-231 cells in-vitro. DEHP exposure induced morphological changes, actin cytoskeletal remodeling, increased ROS content, reduced basal level lipid peroxidation, and induced epithelial to mesenchymal transition (EMT). The present approach can help to explore the potentially damaging effects of environmental agents on cancer risk and understand the underlined pathways and molecular mechanisms.

12.
Genes Dis ; 9(6): 1443-1465, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36157483

RESUMO

Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.

13.
Pharmacol Res ; 180: 106239, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500882

RESUMO

DOC2B is a ubiquitously expressed isoform of the double C-2 protein family that requires Ca2+ for most of its physiological functions. Initial findings have indicated that DOC2B participates in exocytosis, vesicular transport, insulin secretion and regulation, glucose homeostasis, and neurotransmitter release. Aberrant expression of DOC2B has been reported in diabetes, leukemia, and cervical cancer (CC). Our earlier studies have demonstrated the inhibitory effects of DOC2B on CC cell proliferation, migration, invasion, and EMT and suggested the possible role of DOC2B in Wnt signaling inhibition. However, the association between DOC2B downregulation and Wnt/ß-catenin signaling activation and the underlying molecular mechanism remain elusive. Herein, we found that DOC2B inhibited Wnt/ß-catenin pathway by enhancing the expression of the components of the CTNNB1 destruction complex and by fostering proteasomal degradation of CTNNB1. The translocation of CTNNB1 to the nucleus and its interaction with TCF/LEF family transcription factors was perturbed in the presence of DOC2B in a GSK3ß independent manner. Further, we have identified DKK1 as one of the upregulated genes in the presence of DOC2B. DKK1 inhibition in DOC2B expressing cells by WAY262611 reactivated Wnt/ß-catenin signaling, relieved DOC2B induced senescence, and alleviated the inhibitory effects of DOC2B on the aforementioned malignant behaviors. We have provided evidence for DOC2B-DKK1-senescence-Wnt/ß-catenin-EMT signaling crosstalk to have tumor growth regulatory functions in CC. Thus, targeting DOC2B-DKK1-senescence-Wnt/ß-catenin-EMT signaling crosstalk via activation of DOC2B may offer a novel approach to restraint malignant behaviors in CC.


Assuntos
Neoplasias do Colo do Útero , Via de Sinalização Wnt , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Proteínas do Tecido Nervoso/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , beta Catenina/metabolismo
14.
J Cell Sci ; 135(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35297485

RESUMO

MicroRNAs (miRNAs) play a significant role in nuclear and mitochondrial anterograde and retrograde signaling. Most of the miRNAs found inside mitochondria are encoded in the nuclear genome, with a few mitochondrial genome-encoded non-coding RNAs having been reported. In this study, we have identified 13 mitochondrial genome-encoded microRNAs (mitomiRs), which were differentially expressed in breast cancer cell lines (MCF-7, MDA-MB-468 and MDA-MB-231), non-malignant breast epithelial cell line (MCF-10A), and normal and breast cancer tissue specimens. We found that mitochondrial DNA (mtDNA) depletion and inhibition of mitochondrial transcription led to reduced expression of mitomiRs in breast cancer cells. MitomiRs physically interacted with Ago2, an RNA-induced silencing complex (RISC) protein, in the cytoplasm and inside mitochondria. MitomiRs regulate the expression of both nuclear and mitochondrial transcripts in breast cancer cells. We showed that mitomiR-5 targets the PPARGC1A gene and regulates mtDNA copy number in breast cancer cells. MitomiRs identified in the present study may be a promising tool for expression and functional analysis in patients with a defective mitochondrial phenotype, including cancer and metabolic syndromes. This article has an associated First Person interview with the first author of the paper.


Assuntos
Neoplasias da Mama , Genoma Mitocondrial , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Feminino , Genoma Mitocondrial/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
15.
Am J Med Sci ; 363(6): 526-537, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995576

RESUMO

BACKGROUND: Cervical cancer (CC) is the fourth most common gynecological malignancy globally. This suggests the need for improved markers for prognosis, better understanding of the molecular mechanism, and targets for therapy. The defective exocytosis pathway is proposed as bona fide drivers of carcinogenesis. This study aimed to identify the exocytosis pathway network and its contribution to CC. METHODS: We screened exocytosis genes from the The Cancer Genome Atlas Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (TCGA-CESC) dataset and performed differential expression and methylation, Kaplan-Meier survival, and pathway enrichment analysis. We constructed the protein-protein interaction networks (PPIN), predicted the possible metastatic genes, and identified FDA approved drugs to target the exocytosis network in CC. RESULTS: Integrated bioinformatics analysis identified 245 differentially methylated genes, including 153 hypermethylated and 92 hypomethylated genes. Further, 89 exocytosis pathway genes were differentially expressed, including 60 downregulated and 29 upregulated genes in CC. The overlapping analysis identified 39 genes as methylation regulated genes and showed an inverse correlation between methylation and expression. The HCMDB database identified nine of the identified genes (GRIK5, PTPN6, GAB2, ATP8B4, HTR2A, SPARC, CLEC3B, VWF, and S100A11) were linked with metastasis in CC. Moreover, the Kaplan-Meier survival analysis identified that high expression of PTPN6 and low expression of CLEC3B were significantly linked with poor overall survival (OS) in patients with CC. The KEGG pathway enrichment analysis identified differentially expressed genes that were mainly involved with proteoglycans in cancer, TGF-beta signaling, PI3K-Akt signaling, MAPK signaling pathway, and others. The PPIN identified 89 nodes, 192 edges with VWF, MMP9, THBS1, IGF1, CLU, A2M, IGF2, SPARC, VAMP2, and FIGF as top 10 hub genes. The drug-gene interaction analysis identified 188 FDA approved drugs targeting 32 genes, including 5 drugs that are already in use for treating CC. CONCLUSIONS: In summary, we have identified the exocytosis pathway networks, candidate genes, and novel drugs for better management of CC.


Assuntos
Neoplasias do Colo do Útero , Biomarcadores Tumorais/genética , Exocitose , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
16.
Cells Tissues Organs ; 211(2): 134-156, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33316804

RESUMO

Despite substantial advances in the field of cancer therapeutics, metastasis is a significant challenge for a favorable clinical outcome. Epithelial to mesenchymal transition (EMT) is a process of acquiring increased motility, invasiveness, and therapeutic resistance by cancer cells for their sustained growth and survival. A plethora of intrinsic mechanisms and extrinsic microenvironmental factors drive the process of cancer metastasis. Calcium (Ca2+) signaling plays a critical role in dictating the adaptive metastatic cell behavior comprising of cell migration, invasion, angiogenesis, and intravasation. By modulating EMT, Ca2+ signaling can regulate the complexity and dynamics of events leading to metastasis. This review summarizes the role of Ca2+ signal remodeling in the regulation of EMT and metastasis in cancer.


Assuntos
Sinalização do Cálcio , Transição Epitelial-Mesenquimal , Cálcio , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Invasividade Neoplásica
17.
Cell Biol Toxicol ; 38(1): 1-30, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34617205

RESUMO

Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.


Assuntos
Genes Homeobox , Neoplasias , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Genes Homeobox/genética , Humanos , Neoplasias/metabolismo , Transdução de Sinais/genética
18.
Cell Biol Toxicol ; 38(2): 237-258, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33758996

RESUMO

Senescence induction and epithelial-mesenchymal transition (EMT) events are the opposite sides of the spectrum of cancer phenotypes. The key molecules involved in these processes may get influenced or altered by genetic and epigenetic changes during tumor progression. Double C2-like domain beta (DOC2B), an intracellular vesicle trafficking protein of the double C2 protein family, plays a critical role in exocytosis, neurotransmitter release, and intracellular vesicle trafficking. DOC2B is repressed by DNA promoter hypermethylation and functions as a tumor growth regulator in cervical cancer. To date, the molecular mechanisms of DOC2B in cervical cancer progression and metastasis is elusive. Herein, the biological functions and molecular mechanisms regulated by DOC2B and its impact on senescence and EMT are described. DOC2B inhibition promotes proliferation, growth, and migration by relieving G0/G1-S arrest, actin remodeling, and anoikis resistance in Cal27 cells. It enhanced tumor growth and liver metastasis in nude mice with the concomitant increase in metastasis-associated CD55 and CD61 expression. Inhibition of EMT and promotion of senescence by DOC2B is a calcium-dependent process and accompanied by calcium-mediated interaction between DOC2B and CDH1. In addition, we have identified several EMT and senescence regulators as targets of DOC2B. We show that DOC2B may act as a metastatic suppressor by inhibiting EMT through induction of senescence via DOC2B-calcium-EMT-senescence axis.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias do Colo do Útero , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
19.
F1000Res ; 11: 1563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761830

RESUMO

Background: Lycium barbarum (L. barbarum), popularly referred to as Goji berry, is a promising herb known for its powerful anti-antioxidant, antibacterial, and anti-inflammatory properties. It is used in traditional Chinese medicine for treating inflammatory and infectious diseases. It has also shown good anti-cancer properties and has been tested against liver, colon, prostate, breast, and cervical cancers. However, no study has yet evaluated the role of goji berries against oral cancer. Hence, the present paper aims to evaluate the anticancer properties of L. barbarum against oral squamous cell carcinoma. Method: Ethanolic extract of L. barbarum (EELB) was tested for its anticancer properties by performing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, colony formation, cell proliferation, and scratch wound test. The impact of EELB on the signaling transduction pathways of Extracellular signal-regulated kinase (ERK1/2), protein kinase (AKT1), cyclin D1 and epithelial-mesenchymal transition (EMT) was also assessed by western blot. Results: The results showed that EELB can impede CAL-27 cell growth, proliferation and migration in-vitro. It even reduced the phosphorylation of ERK1/2 and AKT1 with concomitant downregulation of cyclin D1 (CCND1), cadherin 2 (CDH2), and vimentin (VIM) and upregulation of cadherin 1 (CDH1) expression suggesting its anti-proliferative and anti-EMT effects in oral cancer. Conclusion: Goji berry has good antiproliferative and anti-invasive properties. It affects potential EMT markers and signaling transduction pathways involved in oral cancers. Hence goji berry can be tried as a potential anticancer agent to manage oral squamous cell carcinoma.


Assuntos
Lycium , Neoplasias Bucais , Extratos Vegetais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1 , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Extratos Vegetais/farmacologia
20.
Asian Pac J Cancer Prev ; 22(6): 1799-1811, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181336

RESUMO

BACKGROUND: Cervical cancer (CC) is one of the most common female cancers in many developing and underdeveloped countries. High incidence, late presentation, and mortality suggested the need for molecular markers. Mitochondrial defects due to abnormal expression of nuclear-encoded mitochondrial genes (NEMG) have been reported during cancer progression. Nevertheless, the application of NEMG for the prognosis of CC is still elusive. Herein, we aimed to investigate the associations between NEMG and CC prognosis. MATERIALS AND METHODS: The differentially expressed genes (DEG) in the TCGA-CESC dataset and NEMGs were retrieved from TACCO and Mitocarta2.0 databases, respectively. The impact of methylation on NEMG expression were predicted using DNMIVD and UALCAN tools. HCMDB tool was used to predict genes having metastatic potential. The prognostic models were constructed using DNMIVD, TACCO, GEPIA2, and SurvExpress. The functional enrichment analysis (FEA) was performed using clusterProfiler. The protein-protein interaction network (PPIN) was constructed to identify the hub genes (HG) using String and CytoHubba tools. Independent validation of the HG was performed using Oncomine and Human Protein Atlas databases. The druggable genes were predicted using DGIdb. RESULTS: Among the 52 differentially expressed NEMG, 15 were regulated by DNA methylation. The expression level of 16, 10, and 7 has the potential for CC staging, prediction of metastasis, and prognosis. Moreover, 1 driver gene and 16 druggable genes were also identified. The FEA identified the enrichment of cancer-related pathways, including AMPK and carbon metabolism in cancer. The combined expression of 10 HG has been shown to affect patient survival. CONCLUSION: Our findings suggest that the abnormal expression of NEMGs may play a critical role in CC development and progression. The genes identified in our study may serve as a prognostic indicator and therapeutic target in CC.
.


Assuntos
Biomarcadores Tumorais/genética , Redes Reguladoras de Genes , Genes Mitocondriais , Neoplasias do Colo do Útero/genética , Metilação de DNA , Conjuntos de Dados como Assunto , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA