Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 368(6492)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32409446

RESUMO

Hu and Ruckenstein state that our findings were overclaimed and not new, despite our presentation of evidence for the Nanocatalysts on Single Crystal Edges (NOSCE) mechanism. Their arguments do not take into account fundamental differences between our Ni-Mo/MgO catalyst and their NiO/MgO preparations.

2.
Science ; 367(6479): 777-781, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32054760

RESUMO

Large-scale carbon fixation requires high-volume chemicals production from carbon dioxide. Dry reforming of methane could provide an economically feasible route if coke- and sintering-resistant catalysts were developed. Here, we report a molybdenum-doped nickel nanocatalyst that is stabilized at the edges of a single-crystalline magnesium oxide (MgO) support and show quantitative production of synthesis gas from dry reforming of methane. The catalyst runs more than 850 hours of continuous operation under 60 liters per unit mass of catalyst per hour reactive gas flow with no detectable coking. Synchrotron studies also show no sintering and reveal that during activation, 2.9 nanometers as synthesized crystallites move to combine into stable 17-nanometer grains at the edges of MgO crystals above the Tammann temperature. Our findings enable an industrially and economically viable path for carbon reclamation, and the "Nanocatalysts On Single Crystal Edges" technique could lead to stable catalyst designs for many challenging reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA