RESUMO
Coastal urbanisation has ramifications for the sustainable development of developing nations. There are often unquantified ecological and health risks associated with urbanisation. Sixteen polycyclic aromatic hydrocarbons (PAHs) were analysed in surface sediment from three peri-urban coastal lagoons in southern Ghana. We found significant spatial variations of sediment PAHs. These variations were attributed to physiography of the lagoons and diverse anthropogenic activities surrounding them. Total PAHs ranged from 20.81 to 24,801.38 µg/kg (dry weight), underscoring a low to very high pollution level. Diagnostic ratios revealed both pyrogenic and petrogenic origins. Over 50 % of individual PAHs were of moderate ecological risk to benthic organisms, and cancer risk to humans was above the World Health Organisation's recommended safety limit (1 × 10-6). These ecological and health risks should be wake-up call for a more integrated urban planning approach to coastal urbanisation as coastal communities largely depend on natural ecosystems for food and livelihood opportunities.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Sedimentos Geológicos/química , Gana , Poluentes Químicos da Água/análise , Medição de Risco , Humanos , Ecotoxicologia , Ecossistema , UrbanizaçãoRESUMO
The present study employed epiphytic lichens as biomonitor and passive air sampler for the assessment of fifteen (15) atmospheric polycyclic aromatic hydrocarbons (PAHs) in some major cities in three regions of Ghana. A total of 36 composite lichen samples were collected and analysed using Gas Chromatography - Tandem Mass Spectrometry (GC-MS-MS). The total PAH recorded ranged between 1909.9 ng/kg (A36) and 250,091.4 ng/kg (W15). Due to the inherent deficiencies in using a single source apportionment tool, multiple source apportionment methods including diagnostic ratios, principal component analysis/absolute principal component scores (PCA-APCS) and APCS with automatic linear model (APCS-ALM) were used to ascertain the source of PAHs in the lichens. The diagnostic ratios revealed a mix source of wood/grass and petrol/petroleum fuel combustion, with the major source ascribing to wood/grass combustion. The source apportionment confirmatory statistical test conducted with the PCA-APCS and APCS-ALM, were in good agreement with the diagnostic ratio. Both PCA-APCS and APCS-ALM suggested two significant sources (p < 0.0), with wood/grass combustion as the major (contributing 77.8%) and mix petroleum related sources being the other with 22.2% contribution of PAHs to the receptor sites. The study found PCA-APCS and especially APCS-ALM to be an effective statistical tool for PAH source apportionment in passive air samplers. To our knowledge, this is the first use of lichens for PAH monitoring in the country. Therefore, this study could serve as an inexpensive and real time bio-monitoring tool for air quality assessment in the African sub-region and the world at large.
RESUMO
The presence of U.S. EPA priority organic contaminants in drinking water poses a dire health risk on consumers. Packaged drinking water such as plastic sachet drinking water has significantly gained market in both developed and developing countries, especially, its dominance in the Ghanaian market. The treatment process, packaging, and storage of the sachet drinking water contribute to the levels of genotoxic semi-volatile phenols, p-chloroaniline, and plasticizers contamination in the drinking water. The study thus sought to investigate the levels of semi-volatile phenols, p-chloroaniline, and plasticizer contaminants in sachet drinking water on the Ghanaian market and the associated health risk of exposure. The study also investigated the possible sources of the contaminants. A total of thirty (30) different brands of sachet water on the Ghanaian market were studied. The samples were extracted in replicates (n = 3) using Solid Phase Extraction (SPE) cartridges and further analysed with GC-MS (SIM mode). The source apportionment was conducted using absolute principal component analysis coupled with multiple, linear regression (APCA-MLR) and automatic linear regression (APCA-MALR) modelling. The mean total levels for the phenols, p-chloroaniline, and plasticizers were between 210.2 and 18,914.9, 11.2 and 18,871.0, and 21.2 and 69,834.1 ng/L respectively. The cumulative non-cancer risk (hazard quotient) and cancer risk upon exposure were computed to range between 2.1 × 10-3 and 1.2 and 1.5 × 10-7 and 1.3 × 10-4 respectively. About 37% of the samples had elevated cancer risk (>10-6) which may contribute to the existing incidence, cause for concern. The five sources found for the contaminants were apportioned as "environmental background (major)", "water treatment/disinfectant", "plastic/plasticizers", "storage and preservation", and "residual inter-conversion/degradation sources".
Assuntos
Água Potável , Poluentes Químicos da Água , Compostos de Anilina , Gana , Fenóis/análise , Plastificantes/análise , Plásticos , Poluentes Químicos da Água/análiseRESUMO
Illicit use of Sudan dyes, a group of harmful and carcinogenic azo dyes, in the food industry has taken a surge in various parts of the world, especially in Africa. Their use in food as additives pose a dire health risk to consumers and have been banned by various food regulatory bodies worldwide. To help increase surveillance, various methods have been proposed for their analysis in literature. This study also sought to experiment and propose an alternative method for quick, easy, cheap, robust and ecologically safe analysis of Sudan dyes in chilli pepper powder and similar matrices. The optimized method used a 6.0 mL mixture of acetone:acetonitrile (1:5 v/v) solvent in a modified QuEChERs method for extraction of Sudan dyes I-IV. The simultaneous analysis of the dyes were achieved on Shimadzu prominence UFLC 20AD coupled with SPD 20AX UV detector operated at dual wavelength of 500 and 480 nm. A total of twenty four (24) chilli pepper powder samples from eight different vendors on the Ghana market were analysed using the optimized method. Quantitation of analytes were done using the external standard calibration method with determination coefficient, R2 > 0.9999. The limit of detection (LOD) and limit of quantitation (LOQ) of the method were 0.02-0.04 mg/kg and 0.05-0.13 mg/kg respectively. A good recovery range between 85.3 - 121.2% were obtained for a spike level of 1.0 mg/kg in real samples. ANOVA analysis at 95% CL showed statistically no significant difference (p > 0.05) in the recoveries between samples and also between the individual compounds. The method experimented and proposed in this study is fast, easy, cheap, robust and ecologically safe, presenting an alternative method for routine analysis for increased rate of surveillance against the illicit use of Sudan dyes as food additives.
RESUMO
The presence of phthalates, polycyclic aromatic hydrocarbons (PAHs) and semi-volatile chlorinated organic compounds (SVCOC) in toilet tissue papers may be detrimental to the health of consumers upon exposure. This study therefore, sought to investigate the levels of these toxicants in toilet tissue papers on the Ghanaian market and the associated risk of exposure. The study also sought to conduct source apportionments for analytes. A total of 32 composite toilet tissue samples from 8 different brands were analysed in replicates for PAHs, phthalates and SVCOCs. Analysis was conducted using Shimadzu GCMS QP 2020 with the MS operated in SIM mode. The results showed elevated levels of PAHs, phthalates, and appreciable levels of SVCOCs in the toilets tissue papers. The risk assessment conducted, showed an associated elevated cancer risk >10-4 for PAHs in all samples and DEHP in samples NN, BB and SF. The risk associated with the levels of carcinogenic SVCOCs were found to be > 10-5 but < 10-4.The hazard indices (HI) calculated for non-cancer effects, showed risk levels < 1.0 for phthalates in most toilet paper samples except for samples BB and SF. The HI recorded for chlorophenols were all <1. Cumulatively, these values suggested elevated cancer and non-cancer risk associated with the dermal use of the toilet tissue papers on the Ghanaian market. The PCA-MLR source apportionment suggested two significant sources of SVOCs in the toilet tissue papers. PAHs, phthalates and 2-chloronaphthalene were of one source (oil base source) whereas SVCOCs were of another source (bleaching process).