RESUMO
BACKGROUND: This randomised, open label, phase I, immunotherapeutic study investigated the effects of interleukin (IL)-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), recombinant human growth hormone (rhGH), and therapeutic immunisation (a Clade B DNA vaccine) on combination antiretroviral therapy (cART)-treated HIV-1-infected individuals, with the objective to reverse residual T-cell dysfunction. METHODS: Twelve HIV-1(+) patients on suppressive cART with baseline CD4 T-cell counts >400 cells/mm(3) blood were randomised into one of three groups: (1) vaccine, IL-2, GM-CSF and rhGH (n=3); (2) vaccine alone (n=4); or (3) IL-2, GM-CSF and rhGH (n=5). Samples were collected at weeks 0, 1, 2, 4, 6, 8, 12, 16, 24 and 48. Interferon (IFN)-γ, IL-2, IL-4 and perforin ELISpot assays performed at each time point quantified functional responses to Gag p17/p24, Nef, Rev, and Tat peptides; and detailed T-cell immunophenotyping was undertaken by flow cytometry. Proviral DNA was also measured. RESULTS: Median baseline CD4 T-cell count was 757 cells/mm(3) (interquartile range [IQR] 567-886 cells/mm(3)), median age 48 years (IQR 42-51 years), and plasma HIV-1-RNA <50 copies/ml for all subjects. Patients who received vaccine plus IL-2, GM-CSF and rhGH (group 1) showed the most marked changes. Assessing mean changes from baseline to week 48 revealed significantly elevated numbers of CD4 T cells (p=0.0083) and improved CD4/CD8 T-cell ratios (p=0.0033). This was accompanied by a significant reduction in expression of CD38 on CD4 T cells (p=0.0194), significantly increased IFN-γ and IL-2 production in response to Gag (p=0.0122) and elevated IFN-γ production in response to Tat (p=0.041) at week 48 compared to baseline. Subjects in all treatment groups showed significantly reduced PD-1 expression at week 48 compared to baseline, with some reductions in proviral DNA. CONCLUSIONS: Multifarious immunotherapeutic approaches in the context of fully suppressive cART further reduce immune activation, and improve both CD4 T-lymphocyte counts and HIV-1-specific T-cell responses (NCT01130376).
Assuntos
Vacinas contra a AIDS/uso terapêutico , Antirretrovirais/uso terapêutico , Citocinas/uso terapêutico , Hormônio do Crescimento/uso terapêutico , Infecções por HIV/imunologia , Infecções por HIV/terapia , Adulto , Linfócitos T CD4-Positivos/imunologia , Terapia Combinada/métodos , Citocinas/análise , ELISPOT , Citometria de Fluxo , Antígenos HIV/imunologia , Humanos , Imunofenotipagem , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Perforina/análise , Provírus/genética , Resultado do Tratamento , Vacinas de DNA/uso terapêuticoRESUMO
Broad CTL response against HIV-1 is one factor that helps to control the viral replication. We have constructed a DNA vaccine that encodes a large artificial fusion protein (MultiHIV) and shown it to be immunogenic in mice, swine and macaques. Inbred mice revealed CTL response only against two epitopes due to limited MHC class I variability. To assess the quality of the CTL response we addressed this question in domestic swine. Number of presented epitopes varied between 7 and 14 among the five selected animals. Epitopes detected in swine are localised in the same antigenic regions recognised in humans. This can be explained by the fact that swine MHC-I (SLA-I) complex is remarkably similar to human HLA-I. These results also indicate that immunogenicity profile of vaccines in domestic swine may predict the outcome of human immunisation.
Assuntos
Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas de DNA/imunologia , Animais , Mapeamento de Epitopos , Epitopos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , SuínosRESUMO
Strategies to improve vaccine efficacy are still required, especially in the case of chronic infections, including human immunodeficiency virus (HIV). DNA vaccines have potential advantages over conventional vaccines; however, low immunological efficacy has been demonstrated in many experiments involving large animals and in clinical trials. To improve the immunogenicity of DNA vaccines, we have designed a plasmid vector exploiting the binding capacity of the bovine papillomavirus E2 protein and we have used electroporation (EP) to increase DNA uptake after intradermal inoculation. We demonstrated, in nonhuman primates (NHPs), efficient induction of anti-HIV immunity with an improved DNA vaccine vector encoding an artificial fusion protein, consisting of several proteins and selected epitopes from HIV-1. We show that a DNA vaccine delivery method combining intradermal injection and noninvasive EP dramatically increased expression of the vaccine antigen selectively in the epidermis, and our observations strongly suggest the involvement of Langerhans cells in the strength and quality of the anti-HIV immune response. Although the humoral responses to the vaccine were transient, the cellular responses were exceptionally robust and persisted, at high levels, more than 2 years after the last vaccine boost. The immune responses were characterized by the induction of significant proportions of T cells producing both interferon-gamma and interleukin-2 cytokines, in both subpopulations, CD4(+) and CD8(+). This strategy is an attractive approach for vaccination in humans because of its high efficacy and the possible use of newly developed devices for EP.
Assuntos
Vacinas contra a AIDS/efeitos adversos , Vetores Genéticos/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Pele/imunologia , Animais , Citocinas/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroporação , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/genética , Vetores Genéticos/genética , Imuno-Histoquímica , Células de Langerhans/imunologia , Macaca fascicularis , Estatísticas não Paramétricas , Linfócitos T/imunologia , Resultado do Tratamento , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
The aim of this survey was to investigate human immunodeficiency virus type 1 (HIV-1) coreceptor, chemokine receptor 5 (CCR5), polymorphism among Estonian HIV-1-infected individuals. Homozygous CCR5Delta32 genotypes have been associated with resistance to HIV-1 infection; however, inconsistent evidence exists as to whether a single copy of a mutant allele among heterozygotes confers protection from HIV-1 infection. In an Estonian population the frequency of the CCR5Delta32 allele has been found to be among the greatest observed to date. Ironically, Estonia is concomitantly characterized by a very high HIV-1 prevalence. We compared the allele frequencies in a healthy control population to the HIV-positive group. The frequency of heterozygous individuals did not differ significantly between the HIV-positive group and the control population. Allele frequencies were analyzed among different risk groups as well as groups with different HIV genetic backgrounds. We did not find a difference between CCR5Delta32 allele frequencies among intravenous drug users (IDUs) and sexually infected persons. Likewise, the distribution of CCR5Delta32 allele frequencies among patients infected with different subtypes did not differ while data from "pure" subtypes A, B, and CRF06_cpx were pooled and evaluated against unique recombinant forms.
Assuntos
Predisposição Genética para Doença/epidemiologia , Infecções por HIV/genética , HIV-1/imunologia , Polimorfismo de Nucleotídeo Único , Receptores CCR5/genética , Abuso de Substâncias por Via Intravenosa/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estônia/epidemiologia , Feminino , Predisposição Genética para Doença/genética , Testes Genéticos , Infecções por HIV/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de RiscoRESUMO
An earlier study has indicated that a complex recombinant HIV-1 strain dominates the epidemic in Estonia. The objective of this study was to further investigate the molecular epidemiology and genetic structure of HIV-1 in Estonia. Most of the investigated individuals became infected after August 2000 when HIV-1 started to spread rapidly among Estonian intravenous drug users (IDUs). Two viral DNA regions, gag/pol and gp41, were sequenced and subtyped from peripheral blood mononuclear cells or plasma from 141 individuals. Phylogenetic analysis in the gp41 region revealed that the most frequent type of the virus among IDUs was a circulating recombinant form, CRF06_cpx, whereas a few samples showed highest sequence similarity to a subtype A strain circulating in Ukraine and Russia. Likewise, in the gag/pol region, most of the samples were classified as CRF06_cpx, with a few classified as subtype A. In this region, however, 16% of the sequences turned out to be mosaic unique recombinant forms consisting of CRF06_cpx and subtype A. At least 9 mosaic forms were identified, each with distinct patterns of multiple crossover. To characterize Estonian CRF06_cpx as well as recombinant isolates in more detail, 4 near-full-length HIV-1 genomes were sequenced.