Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 284(6): e21595, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183495

RESUMO

In contrast to the well-studied articulated vertebrate jaws, the structure and function of cephalopod jaws remains poorly known. Cephalopod jaws are unique as the two jaw elements do not contact one another, are embedded in a muscular mass and connected through a muscle joint. Previous studies have described the anatomy of the buccal mass muscles in cephalopods and have proposed variation in muscle volume depending on beak shape. However, the general structure of the muscles has been suggested to be similar in octopuses, squids, and cuttlefish. Here we provide a quantitative analysis of the variation in the buccal mass of coleoids using traditional dissections, histological sections and contrast-enhanced computed tomography scans. Our results show that the buccal mass is composed of four main homologous muscles present in both decapodiforms and octopodiforms as suggested previously. However, we also report the presence of a muscle uniquely present in octopodiforms (the postero-lateral mandibular muscle). Our three dimensional reconstructions and quantitative analyses of the buccal mass muscles pave the way for future functional analyses allowing to better model jaw closing in coleoids. Finally, our results suggest differences in beak and muscle function that need to be validated using future in vivo functional analyses.


Assuntos
Octopodiformes , Animais , Anatomia Comparada , Octopodiformes/fisiologia , Músculos/fisiologia , Decapodiformes , Arcada Osseodentária/diagnóstico por imagem
2.
Front Zool ; 20(1): 15, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085882

RESUMO

Brittle stars, unlike most other echinoderms, do not use their small tube feet for locomotion but instead use their flexible arms to produce a rowing or reverse rowing movement. They are among the fastest-moving echinoderms with the ability of complex locomotory behaviors. Considering the high species diversity and variability in morphotypes, a proper understanding of intra- and interspecies variation in arm flexibility and movement is lacking. This study focuses on the exploration of the methods to investigate the variability in brittle star locomotion and individual arm use. We performed a two-dimensional (2D) image processing on horizontal movement only. The result indicated that sinuosity, disc displacement and arm angle are important parameters to interpret ophiuroid locomotion. A dedicated Python script to calculate the studied movement parameters and visualize the results applicable to all 5-armed brittle stars was developed. These results can serve as the basis for further research in robotics inspired by brittle star locomotion.

3.
J Anat ; 242(2): 312-326, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36087281

RESUMO

In limbless fossorial vertebrates such as caecilians (Gymnophiona), head-first burrowing imposes severe constraints on the morphology and overall size of the head. As such, caecilians developed a unique jaw-closing system involving the large and well-developed m. interhyoideus posterior, which is positioned in such a way that it does not significantly increase head diameter. Caecilians also possess unique muscles among amphibians. Understanding the diversity in the architecture and size of the cranial muscles may provide insights into how a typical amphibian system was adapted for a head-first burrowing lifestyle. In this study, we use dissection and non-destructive contrast-enhanced micro-computed tomography (µCT) scanning to describe and compare the cranial musculature of 13 species of caecilians. Our results show that the general organization of the head musculature is rather constant across extant caecilians. However, the early-diverging Rhinatrema bivittatum mainly relies on the 'ancestral' amphibian jaw-closing mechanism dominated by the m. adductores mandibulae, whereas other caecilians switched to the use of the derived dual jaw-closing mechanism involving the additional recruitment of the m. interhyoideus posterior. Additionally, the aquatic Typhlonectes show a greater investment in hyoid musculature than terrestrial caecilians, which is likely related to greater demands for ventilating their large lungs, and perhaps also an increased use of suction feeding. In addition to three-dimensional interactive models, our study provides the required quantitative data to permit the generation of accurate biomechanical models allowing the testing of further functional hypotheses.


Assuntos
Anfíbios , Crânio , Animais , Filogenia , Microtomografia por Raio-X , Anfíbios/anatomia & histologia , Crânio/anatomia & histologia , Músculo Esquelético
4.
Dev Dyn ; 252(5): 553-588, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36351887

RESUMO

BACKGROUND: Syngnathids are a highly derived and diverse fish clade comprising the pipefishes, pipe-horses, and seahorses. They are characterized by a plethora of iconic traits that increasingly capture the attention of biologists, including geneticists, ecologists, and developmental biologists. The current understanding of the origins of their derived body plan is, however, hampered by incomplete and limited descriptions of the early syngnathid ontogeny. RESULTS: We provide a comprehensive description of the development of Nerophis ophidion, Syngnathus typhle, and Hippocampus erectus from early cleavage stages to release from the male brooding organ and beyond, including juvenile development. We comparatively describe skeletogenesis with a particular focus on dermal bony plates, the snout-like jaw morphology, and appendages. CONCLUSIONS: This most comprehensive and detailed account of syngnathid development to date suggests that convergent phenotypes (e.g., reduction and loss of the caudal fins), likely arose by distinct ontogenetic means in pipefishes and seahorses. Comparison of the ontogenetic trajectories of S. typhle and H. erectus provides indications that characteristic features of the seahorse body plan result from developmental truncation. Altogether, this work provides a valuable resource and framework for future research to understand the evolution of the outlandish syngnathid morphology from a developmental perspective.


Assuntos
Smegmamorpha , Animais , Masculino , Smegmamorpha/anatomia & histologia , Smegmamorpha/genética , Peixes/genética , Face
5.
J Exp Biol ; 225(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35662342

RESUMO

Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.


Assuntos
Anfíbios , Crânio , Anfíbios/fisiologia , Animais , Cabeça , Coluna Vertebral
6.
R Soc Open Sci ; 9(5): 211893, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35582660

RESUMO

In fossil tetrapods, limb bone histology is considered the most reliable tool not only for inferring skeletal maturity-a crucial assessment in palaeobiological and evolutionary studies-but also for evaluating the growth dynamics within the ontogenetic window represented by the primary bone cortex. Due to its complex relationship with bone growth and functional maturation, primary cortical vascularity is an indispensable osteohistological character for reconstructing growth dynamics, especially in the context of various developmental strategies along the precocial-altricial spectrum. Using this concept as our working hypothesis, we developed a new quantitative osteohistological parameter, radial porosity profile (RPP), that captures relative cortical porosity changes in limb bones as trajectories. We built a proof-of-concept RPP dataset on extant birds, then added fossil paravian dinosaurs and performed a set of trajectory-grouping analyses to identify potential RPP categories and evaluate them in the context of our ontogeny-developmental strategy working hypothesis. We found that RPPs, indeed, reflect important developmental features within and across elements, specimens and taxa, supporting their analytical power. Our RPPs also revealed unexpected potential osteohistological correlates of growth and functional development of limb bones. The diverse potential applications of RPPs open up new research directions in the evolution of locomotor ontogeny.

7.
J Anat ; 241(3): 716-728, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488423

RESUMO

Caecilians are elongate, limbless and annulated amphibians that, as far as is known, all have an at least partly fossorial lifestyle. It has been suggested that elongate limbless vertebrates show little morphological differentiation throughout the postcranial skeleton. However, relatively few studies have explored the axial skeleton in limbless tetrapods. In this study, we used µCT data and three-dimensional geometric morphometrics to explore regional differences in vertebral shape across a broad range of caecilian species. Our results highlight substantial differences in vertebral shape along the axial skeleton, with anterior vertebrae being short and bulky, whereas posterior vertebrae are more elongated. This study shows that despite being limbless, elongate tetrapods such as caecilians still show regional heterogeneity in the shape of individual vertebrae along the vertebral column. Further studies are needed, however, to understand the possible causes and functional consequences of the observed variation in vertebral shape in caecilians.


Assuntos
Anfíbios , Coluna Vertebral , Anfíbios/anatomia & histologia , Animais , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem
8.
J Anat ; 240(6): 1034-1047, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34929059

RESUMO

Ophiuroidea are one of the most diverse classes among extant echinoderms, characterized by their flexible arms composed of a series of ossicles called vertebrae, articulating with each other proximally and distally. Their arms show a wide range of motion, important for feeding and locomotion, associated with their epizoic and non-epizoic lifestyles. It remains to be explored to what degree the phenotypic variation in these ossicles also reflects adaptations to these lifestyles, rather than only their phylogenetic affinity. In this study, we analyzed the 3D shape variation of six arm vertebrae from the middle and distal parts of an arm in 12 species, belonging to the intertidal, subtidal and bathyal zones and showing epizoic and non-epizoic behaviors. A PERMANOVA indicated a significant difference in ossicle morphology between species and between lifestyles. A principal component analysis showed that the morphology of epizoic ophiuroids is distinct from non-epizoic ones; which may reflect variation in arm function related to these different lifestyles. The Phylogenetic MANOVA and phylogenetic signal analysis showed that shape variation in the vertebral articulation seems to reflect ecological and functional adaptations, whereas phylogeny controls more the lateral morphology of the vertebrae. This suggests a convergent evolution through ecological adaptation to some degree, indicating that some of these characters may have limited taxonomic value.


Assuntos
Equinodermos , Locomoção , Animais , Equinodermos/anatomia & histologia , Filogenia , Coluna Vertebral
9.
J Exp Biol ; 225(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897477

RESUMO

Caecilians are enigmatic limbless amphibians that, with a few exceptions, all have an at least partly burrowing lifestyle. Although it has been suggested that caecilian evolution resulted in sturdy and compact skulls as an adaptation to their head-first burrowing habits, no relationship between skull shape and burrowing performance has been demonstrated to date. However, the unique dual jaw-closing mechanism and the osteological variability of their temporal region suggest a potential relationship between skull shape and feeding mechanics. Here, we explored the relationships between skull shape, head musculature and in vivo bite forces. Although there is a correlation between bite force and external head shape, no relationship between bite force and skull shape could be detected. Whereas our data suggest that muscles are the principal drivers of variation in bite force, the shape of the skull is constrained by factors other than demands for bite force generation. However, a strong covariation between the cranium and mandible exists. Moreover, both cranium and mandible shape covary with jaw muscle architecture. Caecilians show a gradient between species with a long retroarticular process associated with a large and pennate-fibered m. interhyoideus posterior and species with a short process but long and parallel-fibered jaw adductors. Our results demonstrate the complexity of the relationship between form and function of this jaw system. Further studies that focus on factors such as gape distance or jaw velocity will be needed in order to fully understand the evolution of feeding mechanics in caecilians.


Assuntos
Anfíbios , Força de Mordida , Anfíbios/fisiologia , Animais , Fenômenos Biomecânicos , Cabeça , Arcada Osseodentária/fisiologia , Músculo Esquelético , Crânio
10.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494653

RESUMO

Caecilians are elongate, limbless and annulated amphibians that, with the exception of one aquatic family, all have an at least partly fossorial lifestyle. It has been suggested that caecilian evolution resulted in sturdy and compact skulls with fused bones and tight sutures, as an adaptation to their head-first burrowing habits. However, although their cranial osteology is well described, relationships between form and function remain poorly understood. In the present study, we explored the relationship between cranial shape and in vivo burrowing forces. Using micro-computed tomography (µCT) data, we performed 3D geometric morphometrics to explore whether cranial and mandibular shapes reflected patterns that might be associated with maximal push forces. The results highlight important differences in maximal push forces, with the aquatic Typhlonectes producing a lower force for a given size compared with other species. Despite substantial differences in head morphology across species, no relationship between overall skull shape and push force could be detected. Although a strong phylogenetic signal may partly obscure the results, our conclusions confirm previous studies using biomechanical models and suggest that differences in the degree of fossoriality do not appear to be driving the evolution of head shape.


Assuntos
Anfíbios , Crânio , Animais , Evolução Biológica , Pesos e Medidas Corporais , Filogenia , Microtomografia por Raio-X
11.
Integr Comp Biol ; 61(2): 455-463, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114009

RESUMO

Previous studies have focused on documenting shape variation in the caudal vertebrae in chameleons underlying prehensile tail function. The goal of this study was to test the impact of this variation on tail function using multibody dynamic analysis (MDA). First, observations from dissections and 3D reconstructions generated from contrast-enhanced µCT scans were used to document regional variation in arrangement of the caudal muscles along the antero-posterior axis. Using MDA, we then tested the effect of vertebral shape geometry on biomechanical function. To address this question, four different MDA models were built: those with a distal vertebral shape and with either a distal or proximal musculature, and reciprocally the proximal vertebral shape with either the proximal or distal musculature. For each muscle configuration, we calculated the force required in each muscle group for the muscle force to balance an arbitrary external force applied to the model. The results showed that the models with a distal-type of musculature are the most efficient, regardless of vertebral shape. Our models also showed that the m. ilio-caudalis pars dorsalis is least efficient when combining the proximal vertebral shape and distal musculature, highlighting the importance of the length of the transverse process in combination with the lever-moment arm onto which muscle force is exerted. This initial model inevitably has a number of simplifications and assumptions, however its purpose is not to predict in vivo forces, but instead reveals the importance of vertebral shape and muscular arrangement on the total force the tail can generate, thus providing a better understanding of the biomechanical significance of the regional variations on tail grasping performance in chameleons.


Assuntos
Lagartos , Coluna Vertebral , Cauda , Animais , Lagartos/anatomia & histologia , Músculos/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Cauda/anatomia & histologia
12.
J Anat ; 238(5): 1116-1127, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33417249

RESUMO

Hybridization is suggested to contribute to ecomorphological and taxonomic diversity in lacustrine East African cichlids. This is supported by studies demonstrating that genetic diversity within lake radiations has been influenced by hybridization events, leading to extensive phenotypic differentiation of genetically closely related species. Hybrid persistence and speciation in sympatry with gene flow can be explained by pleiotropy in traits involved in reproductive isolation; however, little attention has been given to how trait differentiation is established during hybrid ontogeny, and how this may relate to trophic and locomotor specialization. This study compares body shape changes in a Lake Victoria cichlid hybrid throughout its post-hatch ontogeny to those of its parental species. Across the considered age/size categories, hybrids occupy a distinct and intermediate morphological space, yet where several transgressive traits emerge. A between-group principal component analysis on body shapes across size categories reveals axes of shape variation exclusive to the hybrids in the youngest/smallest size categories. Shape differences in the hybrids involved morphological traits known to be implicated in trophic and locomotor specializations in the parental species. Combined, our findings suggest that phenotypic divergence in the hybrid can lead to functional differences that may potentially release them to some degree from competition with the parental species. These findings agree with recent literature that addresses the potential importance of hybridization for the unusually recent origin of the Lake Victoria cichlid super-species flock.


Assuntos
Evolução Biológica , Ciclídeos/fisiologia , Hibridização Genética , Locomoção/fisiologia , Animais , Fenótipo
13.
J Anat ; 238(1): 131-145, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790082

RESUMO

As body size strongly determines the biology of an organism at all levels, it can be expected that miniaturization comes with substantial structural and functional constraints. Dwarf snakes of the genus Eirenis are derived from big, surface-dwelling ancestors, considered to be similar to those of the sister genus Dolichophis. To better understand the structural implications of miniaturization on the feeding apparatus in Eirenis, the morphology of the cranial musculoskeletal system of Dolichophis schmidti was compared with that of the miniature Eirenis punctatolineatus and E. persicus using high-resolution µCT data. The gape index was compared between D. schmidti and 14 Eirenis species. Our results show a relatively increased neurocranium size and decreased maximal jaw muscle force in E. persicus, compared with the D. schmidti, and an intermediate situation in E. punctatolineatus. A significant negative allometry in gape index relative to body size is observed across the transition from the Dolichophis to Pediophis and Eirenis subgenera. However, the gape index relative to head size showed a significant negative allometry only across the transition from the Dolichophis to Pseudocyclophis subgenus. In Dolichophis-Eirenis dwarfing lineages, different structural patterns are observed through miniaturization, indicating that overcoming the challenge of miniaturization has achieved via different adaptations.


Assuntos
Tamanho Corporal/fisiologia , Crânio/anatomia & histologia , Serpentes/anatomia & histologia , Animais , Comportamento Alimentar/fisiologia
14.
J Anat ; 237(5): 979-987, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32579740

RESUMO

The European eel (Anguilla anguilla) has been extensively studied, especially because of its highly specialized migratory behaviour associated with substantial phenotypic transformations. During this migration, one of those transformations the eel undergoes is from yellow to silver eel, a process known as silvering. Although the cranial morphology during the earlier glass, elver and yellow eel stages are well studied, little is known about actual morphological changes during the transformation process from the yellow to the silver eel stage. Yet, literature suggests drastic changes in musculoskeletal anatomy. Here, we investigated the cranial musculoskeletal morphology of 11 male European eels at different stages during silvering, resulting both from natural and artificial maturation. Using 3D-reconstructed µCT data of the head, the skull and cranial muscles associated with jaw closing and respiration were studied. Eye size was used as a proxy for the silvering stage. Size-adjusted jaw muscle volumes increased during silvering, although insignificantly. Accordingly, a near-significant increase in bite force was observed. Respiratory muscles size did increase significantly during silvering, however. Considering the eel's long migration, which often includes deep and thus potentially oxygen-poor environments, having a better performing respiratory system may facilitate efficient migration. Both overall skull dimensions and specifically orbit size increased with eye index, suggesting they play a role in accommodating the enlarging eyes during silvering. Finally, artificially matured eels had a wider and taller skull, as well as larger jaw muscles than wild silver eels. This could be caused (a) by different conditions experienced during the yellow eel stage, which are maintained in the silver eel stage, (b) by side effects of hormonal injections or (c) be part of the maturation process as artificially induced silver eels had a higher eye index than the wild silver eels.


Assuntos
Anguilla/crescimento & desenvolvimento , Músculo Esquelético/crescimento & desenvolvimento , Crânio/crescimento & desenvolvimento , Anguilla/anatomia & histologia , Animais , Força de Mordida , Masculino , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Microtomografia por Raio-X
15.
Sci Rep ; 10(1): 6773, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317671

RESUMO

The blue mussel Mytilus edulis is an intensely studied bivalve in biomonitoring programs worldwide. The lack of detailed descriptions of hemolymph-withdrawal protocols, particularly with regard to the place from where hemolymph could be perfused from, raises questions regarding the exact composition of aspirated hemolymph and does not exclude the possibility of contamination with other body-fluids. This study demonstrates the use of high resolution X-ray computed tomography and histology combined with 3D-reconstruction using AMIRA-software to visualize some important vascular-related anatomic structures of Mytilus edulis. Based on these images, different hemolymph extraction sites used in bivalve research were visualized and described, leading to new insights into hemolymph collection. Results show that hemolymph withdrawn from the posterior adductor muscle could be extracted from small spaces and fissures between the muscle fibers that are connected to at least one hemolymph supplying artery, more specifically the left posterior gastro-intestinal artery. Furthermore, 3D-reconstructions indicate that puncturing hemolymph from the pericard, anterior aorta, atria and ventricle in a non-invasive way should be possible. Hemolymph withdrawal from the heart is less straightforward and more prone to contamination from the pallial cavity. This study resulted simultaneously in a detailed description and visualization of the vascular-related anatomy of Mytilus edulis.


Assuntos
Hemolinfa/química , Imageamento Tridimensional , Mytilus edulis/ultraestrutura , Animais , Processamento de Imagem Assistida por Computador , Mytilus edulis/anatomia & histologia , Alimentos Marinhos , Software , Tomógrafos Computadorizados
16.
PeerJ ; 8: e9016, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341904

RESUMO

Reptiles are still being described worldwide at a pace of hundreds of species a year. While many discoveries are from remote tropical areas, biodiverse arid regions still harbor many novel taxa. Here, we present an updated phylogeny of colubrid snakes from the Western Palearctic by analyzing a supermatrix of all available global snake species with molecular data and report on the discovery of a new genus and species of colubrine snake from southeastern Iran. The new taxon, named Persiophis fahimii Gen. et sp. nov., is nested within a clade containing Middle Eastern and South Asian ground racers (Lytorhynchus, Rhynchocalamus, Wallaceophis, and Wallophis). This species has a derived morphology including an edentulous pterygoid and occurrence of short and blunt teeth on the palatine, maxillae and dentary bones, an elongated snout and a relatively trihedral first supralabial scale that is slightly bigger than the second, and elongated toward the tip of rostral. We also report on the osteology and phylogenetic placement of several poorly studied colubrines: Hierophis andreanus (reassigned to Dolichophis) and Muhtarophis barani.

17.
Integr Comp Biol ; 60(2): 467-475, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108900

RESUMO

The European eel (Anguilla anguilla) is a critically endangered species, whose recruitment stocks have declined to nearly 1% compared to the late 70s. An amalgam of factors is responsible for this, among them migration barriers, pollution, habitat loss, parasite infection, and overfishing. A lot of recent studies focus on aspects that can increase the mature silver eel escapement rate, such as identifying migration barriers and developing passageways or addressing the impact of pollution on the eel's health. However, little attention is given to the eel's morphology in function of management measures. Worryingly, less than 50% of the currently installed management plans reach their goals, strongly indicating that more information is needed about the eel's ecology and behavior. Functional morphological studies provide insights on how species perform behaviors crucial for survival, such as feeding and locomotion, but also in how environmental changes can affect or limit such behaviors. Consequently, functional morphology represents an important biotic component that should be taken into account when making conservation decisions. Hence, here, we provide an overview of studies on the eel's morphology that do not only demonstrate its relation with ecology and behavior, but also provide information for developing and installing proper and more specific management measures.


Assuntos
Anguilla/anatomia & histologia , Conservação dos Recursos Naturais , Pesqueiros , Animais , Dinâmica Populacional
18.
J Morphol ; 281(2): 229-239, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883141

RESUMO

Chameleons (Chamaeleonidae) are known for their arboreal lifestyle, in which they make use of their prehensile tail. Yet, some species have a more terrestrial lifestyle, such as Brookesia and Rieppeleon species, as well as some chameleons of the genera Chamaeleo and Bradypodion. The main goal of this study was to identify the key anatomical features of the tail vertebral morphology associated with prehensile capacity. Both interspecific and intra-individual variation in skeletal tail morphology was investigated. For this, a 3D-shape analysis was performed on vertebral morphology using µCT-images of different species of prehensile and nonprehensile tailed chameleons. A difference in overall tail size and caudal vertebral morphology does exist between prehensile and nonprehensile taxa. Nonprehensile tailed species have a shorter tail with fewer vertebrae, a generally shorter neural spine and shorter transverse processes that are positioned more anteriorly (with respect to the vertebral center). The longer tails of prehensile species have more vertebrae as well as an increased length of the processes, likely providing a greater area for muscle attachment. At the intra-individual level, regional variation is observed with more robust proximal tail vertebrae having longer processes. The distal part has relatively longer vertebrae with shorter processes. Although longer, the small size and high number of the distal vertebrae allows the tail to coil around perches.


Assuntos
Ecossistema , Lagartos/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Cauda/anatomia & histologia , Pontos de Referência Anatômicos , Animais , Análise Discriminante , Músculos/anatomia & histologia , Filogenia , Análise de Componente Principal
19.
J Anat ; 236(3): 463-473, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670843

RESUMO

Modern altricial birds are the fastest growing vertebrates, whereas various degrees of precocity (functional maturity) result in slower growth. Diaphyseal osteohistology, the best proxy for inferring relative growth rates in fossils, suggests that in the earliest birds, posthatching growth rates were more variable than in modern representatives, with some showing considerably slow growth that was attributed to their assumed precocial flight abilities. For finding clues how precocial or altricial skeletogenesis and related growth acceleration could be traced in avian evolution, as a case study we investigated the growing limb diaphyseal histology in an ontogenetic series of ducks which, among several other avian taxa, show a combination of altricial wing and precocial leg development. Here we report the unexpected discovery that chondroid bone, a skeletal tissue family intermediate between cartilage and bone, extensively contributes to the development of limb bone shaft in ducks up to at least 30 days posthatching age. To our knowledge, chondroid bone has never been reported in such quantities and with an ontogenetically extended deposition period in post-embryonic, non-pathological periosteal bone formation of any tetrapod limb. It shows transitional cellular/lacunar morphologies and matrix staining properties between cartilage and woven bone and takes a significant part in the diametric growth of the limb bone shaft. Its amount and distribution through duckling ontogeny seems to be associated with the disparate functional and growth trajectories of the altricial wings vs. precocial legs characteristic of duck limb development. The presence of isogenous cell groups in the periosteal chondroid bone implies that cartilage-like interstitial growth took place before matrix mineralization complementing appositional bone growth. Based on these characteristics and on its fast formation rate in all previously reported normal as well as pathological cases, we suggest that chondroid bone in ducks significantly accelerates diametric limb bone growth. Related to this growth acceleration, we hypothesize that chondroid bone may be generally present in the growing limb bones of modern birds and hence may have key skeletogenic importance in achieving extreme avian growth rates and placing birds among the fastest growing vertebrates. Thus, we encourage future studies to test this hypothesis by investigating the occurrence of chondroid bone in a variety of precocial and altricial bird species, and to explore the presence of similar tissues in the growing limbs of other extant and extinct tetrapods in order to understand the evolutionary significance of chondroid bone in accelerated appendicular skeletogenesis.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/fisiologia , Cartilagem/crescimento & desenvolvimento , Patos/crescimento & desenvolvimento , Animais , Patos/fisiologia , Asas de Animais/crescimento & desenvolvimento
20.
J Anat ; 235(2): 189-204, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31148160

RESUMO

Advances in X-ray computed tomography (CT) have led to a rise in the use of non-destructive imaging methods in comparative anatomy. Among these is contrast-enhanced CT scanning, which employs chemical stains to visualize soft tissues. Specimens may then be 'digitally dissected', producing detailed, three-dimensional digital reconstructions of the soft- and hard-tissue anatomy, allowing examination of anatomical structures in situ and making accurate measurements (lengths, volumes, etc.). Here, we apply this technique to two species of teleost fish, providing one of the first comprehensive three-dimensional (3D) descriptions of teleost cranial soft tissue and quantifying differences in muscle anatomy that may be related to differences in feeding ecology. Two species with different feeding ecologies were stained, scanned and imaged to create digital 3D musculoskeletal reconstructions: Esox lucius (Northern Pike), predominantly a suction feeder; and Anguilla anguilla (European eel), which captures prey predominantly by biting. Muscle cross-sectional areas were calculated and compared between taxa, focusing on muscles that serve important roles in feeding. The adductor mandibulae complex - used in biting - was larger in Esox than Anguilla relative to head size. However, the overall architecture of the adductor mandibulae was also very different between the two species, with that of Anguilla better optimized for delivering forceful bites. Levator arcus palatini and sternohyoideus - which are used in suction feeding - are larger in Esox, whereas the levator operculi is larger in Anguilla. Therefore, differences in the size of functionally important muscles do not necessarily correlate neatly with presumed differences in feeding mode.


Assuntos
Anguilla/anatomia & histologia , Esocidae/anatomia & histologia , Sistema Musculoesquelético/anatomia & histologia , Crânio/anatomia & histologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA