Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007270

RESUMO

Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage-dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.


Assuntos
Cromossomos Humanos Par 7 , Variações do Número de Cópias de DNA , Neurônios , Humanos , Neurônios/metabolismo , Neurônios/patologia , Cromossomos Humanos Par 7/genética , Ribossomos/metabolismo , Ribossomos/genética , Neurogênese/genética , Síndrome de Williams/genética , Síndrome de Williams/metabolismo , Síndrome de Williams/patologia , Síndrome de Williams/fisiopatologia , Proteína S6 Ribossômica/metabolismo , Proteína S6 Ribossômica/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Masculino , Diferenciação Celular , Feminino
2.
Cancer Cell ; 39(3): 288-293, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33482122

RESUMO

The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Tomada de Decisão Clínica/métodos , Biologia Computacional/métodos , Sistemas de Apoio a Decisões Clínicas , Humanos , Medicina de Precisão/métodos , Estudos Prospectivos
3.
J Exp Med ; 214(9): 2671-2693, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-28716882

RESUMO

The inflammasomes are multiprotein complexes sensing tissue damage and infectious agents to initiate innate immune responses. Different inflammasomes containing distinct sensor molecules exist. The NLRP3 inflammasome is unique as it detects a variety of danger signals. It has been reported that NLRP3 is recruited to mitochondria-associated endoplasmic reticulum membranes (MAMs) and is activated by MAM-derived effectors. Here, we show that in response to inflammasome activators, MAMs localize adjacent to Golgi membranes. Diacylglycerol (DAG) at the Golgi rapidly increases, recruiting protein kinase D (PKD), a key effector of DAG. Upon PKD inactivation, self-oligomerized NLRP3 is retained at MAMs adjacent to Golgi, blocking assembly of the active inflammasome. Importantly, phosphorylation of NLRP3 by PKD at the Golgi is sufficient to release NLRP3 from MAMs, resulting in assembly of the active inflammasome. Moreover, PKD inhibition prevents inflammasome autoactivation in peripheral blood mononuclear cells from patients carrying NLRP3 mutations. Hence, Golgi-mediated PKD signaling is required and sufficient for NLRP3 inflammasome activation.


Assuntos
Complexo de Golgi/fisiologia , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Proteína Quinase C/fisiologia , Animais , Diglicerídeos/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação
4.
PLoS One ; 8(12): e80047, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348997

RESUMO

Enhanced transcription of the Rv2660c locus in response to starvation of Mycobacterium tuberculosis H37Rv encouraged addition of the predicted Rv2660c protein to an improved vaccine formulation. Using strand-specific RNA sequencing, we show that the up-regulated transcript is in fact a small RNA encoded on the opposite strand to the annotated Rv2660c. The transcript originates within a prophage and is expressed only in strains that carry PhiRv2. The small RNA contains both host and phage sequences and provides a useful biomarker to monitor bacterial starvation during infection and/or non-replicating persistence. Using different approaches we do not find any evidence of Rv2660c at the level of mRNA or protein. Further efforts to understand the mechanism by which Rv2660c improves efficacy of the H56 vaccine are likely to provide insights into the pathology and immunology of tuberculosis.


Assuntos
Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Linhagem Celular , Humanos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/virologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tuberculose/imunologia , Vírion/genética
5.
J Proteome Res ; 11(3): 1598-608, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22148984

RESUMO

Cell surface N-glycoproteins provide a key interface of cells to their environment and therapeutic entry points for drug and biomarker discovery. Their comprehensive description denotes therefore a formidable challenge. The ß-cells of the pancreas play a crucial role in blood glucose homeostasis, and disruption of their function contributes to diabetes. By combining cell surface and whole cell capturing technologies with high-throughput quantitative proteomic analysis, we report on the identification of a total of 956 unique N-glycoproteins from mouse MIN6 ß-cells and human islets. Three-hundred-forty-nine of these proteins encompass potential surface N-glycoproteins and include orphan G-protein-coupled receptors, novel proteases, receptor protein kinases, and phosphatases. Interestingly, stimulation of MIN6 ß-cells with glucose and the hormone GLP1, known stimulators of insulin secretion, causes significant changes in surface N-glycoproteome expression. Taken together, this ß-cell N-glycoproteome resource provides a comprehensive view on the composition of ß-cell surface proteins and expands the scope of signaling systems potentially involved in mediating responses of ß-cells to various forms of (patho)physiologic stress and the extent of dynamic remodeling of surface N-glycoprotein expression associated with metabolic and hormonal stimulation. Moreover, it provides a foundation for the development of diabetes medicines that target or are derived from the ß-cell surface N-glycoproteome.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteoma/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Expressão Gênica , Regulação da Expressão Gênica , Glucose/fisiologia , Humanos , Células Secretoras de Insulina/enzimologia , Ilhotas Pancreáticas/enzimologia , Glicoproteínas de Membrana/genética , Camundongos , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteoma/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Espectrometria de Massas em Tandem
6.
Blood ; 116(13): e26-34, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20570859

RESUMO

Immunophenotyping by flow cytometry or immunohistochemistry is a clinical standard procedure for diagnosis, classification, and monitoring of hematologic malignancies. Antibody-based cell surface phenotyping is commonly limited to cell surface proteins for which specific antibodies are available and the number of parallel measurements is limited. The resulting limited knowledge about cell surface protein markers hampers early clinical diagnosis and subclassification of hematologic malignancies. Here, we describe the mass spectrometry based phenotyping of 2 all-trans retinoic acid treated acute myeloid leukemia model systems at an unprecedented level to a depth of more than 500 membrane proteins, including 137 bona fide cell surface exposed CD proteins. This extensive view of the leukemia surface proteome was achieved by developing and applying new implementations of the Cell Surface Capturing (CSC) technology. Bioinformatic and hierarchical cluster analysis showed that the applied strategy reliably revealed known differentiation-induced abundance changes of cell surface proteins in HL60 and NB4 cells and it also identified cell surface proteins with very little prior information. The extensive and quantitative analysis of the cell surface protein landscape from a systems biology perspective will be most useful in the clinic for the improved subclassification of hematologic malignancies and the identification of new drug targets.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citometria de Fluxo , Células HL-60 , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fenótipo , Espectrometria de Massas em Tandem , Tretinoína/farmacologia
7.
EMBO J ; 28(10): 1453-65, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19387489

RESUMO

Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses.


Assuntos
Centrossomo/química , Citocinese , Cinetocoros/química , Proteínas Associadas aos Microtúbulos/análise , Fuso Acromático/química , Proteínas de Ciclo Celular , Inativação Gênica , Células HeLa , Humanos , Fosforilação , RNA Interferente Pequeno/genética
8.
Cell ; 136(2): 235-48, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19135240

RESUMO

Dysfunction and loss of insulin-producing pancreatic beta cells represent hallmarks of diabetes mellitus. Here, we show that mice lacking the mitogen-activated protein kinase (MAPK) p38delta display improved glucose tolerance due to enhanced insulin secretion from pancreatic beta cells. Deletion of p38delta results in pronounced activation of protein kinase D (PKD), the latter of which we have identified as a pivotal regulator of stimulated insulin exocytosis. p38delta catalyzes an inhibitory phosphorylation of PKD1, thereby attenuating stimulated insulin secretion. In addition, p38delta null mice are protected against high-fat-feeding-induced insulin resistance and oxidative stress-mediated beta cell failure. Inhibition of PKD1 reverses enhanced insulin secretion from p38delta-deficient islets and glucose tolerance in p38delta null mice as well as their susceptibility to oxidative stress. In conclusion, the p38delta-PKD pathway integrates regulation of the insulin secretory capacity and survival of pancreatic beta cells, pointing to a pivotal role for this pathway in the development of overt diabetes mellitus.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Animais , Exocitose , Feminino , Glucose/metabolismo , Complexo de Golgi/metabolismo , Secreção de Insulina , Masculino , Camundongos , Proteína Quinase 13 Ativada por Mitógeno/genética , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA