Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36006373

RESUMO

The diversity of Central Asians has been shaped by multiple migrations and cultural diffusion. Although ancient DNA studies have revealed the demographic changes of the Central Asian since the Bronze Age, the contribution of the ancient populations to the modern Central Asian remains opaque. Herein, we performed high-coverage sequencing of 131 whole genomes of Indo-European-speaking Tajik and Turkic-speaking Kyrgyz populations to explore their genomic diversity and admixture history. By integrating the ancient DNA data, we revealed more details of the origins and admixture history of Central Asians. We found that the major ancestry of present-day Tajik populations can be traced back to the admixture of the Bronze Age Bactria-Margiana Archaeological Complex and Andronovo-related populations. Highland Tajik populations further received additional gene flow from the Tarim mummies, an isolated ancient North Eurasian-related population. The West Eurasian ancestry of Kyrgyz is mainly derived from Historical Era populations in Xinjiang of China. Furthermore, the recent admixture signals detected in both Tajik and Kyrgyz are ascribed to the expansions of Eastern Steppe nomadic pastoralists during the Historical Era.


Assuntos
DNA Antigo , Múmias , Povo Asiático/genética , Etnicidade , Fluxo Gênico , Genética Populacional , Humanos
2.
Mol Biol Evol ; 38(4): 1529-1536, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33283852

RESUMO

The rise and expansion of Tibetan Empire in the 7th to 9th centuries AD affected the course of history across East Eurasia, but the genetic impact of Tibetans on surrounding populations remains undefined. We sequenced 60 genomes for four populations from Pakistan and Tajikistan to explore their demographic history. We showed that the genomes of Balti people from Baltistan comprised 22.6-26% Tibetan ancestry. We inferred a single admixture event and dated it to about 39-21 generations ago, a period that postdated the conquest of Baltistan by the ancient Tibetan Empire. The analyses of mitochondrial DNA, Y, and X chromosome data indicated that both ancient Tibetan males and females were involved in the male-biased dispersal. Given the fact that the Balti people adopted Tibetan language and culture in history, our study suggested the impact of Tibetan Empire on Baltistan involved dominant cultural and minor demic diffusion.


Assuntos
Fluxo Gênico , Genoma Humano , Feminino , Humanos , Masculino , Paquistão , Tibet/etnologia , Sequenciamento Completo do Genoma
3.
Zool Res ; 41(1): 51-60, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31709786

RESUMO

Molecular studies on donkey mitochondrial sequences have clearly defined two distinct maternal lineages involved in domestication. However, domestication histories of these two lineages remain enigmatic. We therefore compared several population characteristics between these two lineages based on global sampling, which included 171 sequences obtained in this study (including Middle Asian, East Asian, and African samples) plus 536 published sequences (including European, Asian, and African samples). The two lineages were clearly separated from each other based on whole mitochondrial genomes and partial non-coding displacement loop (D-loop) sequences, respectively. The Clade I lineage experienced an increase in population size more than 8 000 years ago and shows a complex haplotype network. In contrast, the population size of the Clade II lineage has remained relatively constant, with a simpler haplotype network. Although the distribution of the two lineages was almost equal across the Eurasian mainland, they still presented discernible but complex geographic bias in most parts of Africa, which are known as their domestication sites. Donkeys from sub-Saharan Africa tended to descend from the Clade I lineage, whereas the Clade II lineage was dominant along the East and North coasts of Africa. Furthermore, the migration routes inferred from diversity decay suggested different expansion across China between the two lineages. Altogether, these differences indicated non-simultaneous domestication of the two lineages, which was possibly influenced by the response of pastoralists to the desertification of the Sahara and by the social expansion and trade of ancient humans in Northeast Africa, respectively.


Assuntos
DNA Mitocondrial/genética , Domesticação , Equidae/genética , Variação Genética , Filogenia , Animais , Haplótipos
4.
Eur J Hum Genet ; 26(1): 124-136, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187735

RESUMO

The Pamirs, among the world's highest mountains in Central Asia, are one of homelands with the most extreme high altitude for several ethnic groups. The settlement history of modern humans on the Pamirs remains still opaque. Herein, we have sequenced the mitochondrial DNA (mtDNA) genomes of 382 individuals belonging to eight populations from the Pamirs and the surrounding lowlands in Central Asia. We construct the Central Asian (including both highlanders and lowlanders) mtDNA haplogroup tree at the highest resolution. All the matrilineal components are assigned into the defined mtDNA haplogroups in East and West Eurasians. No basal lineages that directly emanate from the Eurasian founder macrohaplogroups M, N, and R are found. Our data support the origin of Central Asian being the result of East-West Eurasian admixture. The coalescence ages for more than 93% mtDNA lineages in Central Asians are dated after the last glacial maximum (LGM). The post-LGM and/or later dispersals/admixtures play dominant roles in shaping the maternal gene pool of Central Asians. More importantly, our analyses reveal the mtDNA heterogeneity in the Pamir highlanders, not only between the Turkic Kyrgyz and the Indo-European Tajik groups, but also among three highland Tajiks. No evidence supports positive selection or relaxation of selective constraints in the mtDNAs of highlanders as compared to that of lowlanders. Our results suggest a complex history for the peopling of Pamirs by multiple waves of migrations from various genetic resources during different time scales.


Assuntos
Povo Asiático/genética , Evolução Molecular , Genoma Mitocondrial , Migração Humana , Adulto , Ásia Central , China , Feminino , Efeito Fundador , Haplótipos , Humanos , Masculino , Herança Materna , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA