Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 11(15): 8628-8635, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423383

RESUMO

Tellurium-doped mesoporous carbon composite materials (Te/NMC) have been prepared by a facile intercalation method in the presence of nitrogen-doped mesoporous carbon (NMC) with tellurium powder, for the first time. The effects of the co-doped N and Te in the mesoporous carbon matrix on the physical/chemical properties and capacitance performances were investigated via the use of various characterization methods and electrochemical studies. The as-prepared NMC and Te/NMC materials were found to mainly be composed of mesopores and maintained the 3D hierarchical graphite-like structure with lots of defect sites. By intercalation of Te atoms into the NMC materials, 2.12 at% (atom%) of Te was doped into NMC and the specific surface area of Te/NMC (261.07 m2 g-1) decreased by about 1.5 times compared to that of NMC (437.96 m2 g-1). In electrochemical measurements as a supercapacitor (SC) electrode, the Te/NMC based electrode, even with its lower porosity parameters, exhibited a higher capacitive performance compared to the NMC-based electrode. These results for Te/NMC arise due to the pseudo-capacitive effect of doped Te and the increase in the capacitive area available from the formation of interconnections in the mesoporous carbons through Te-O bonds. As a result, the synergetic effect of the Te and N atoms enables Te/NMC to exhibit the highest specific capacitance of 197 F g-1 at a current density of 0.5 A g-1. Moreover, remarkable long-term cycling stability with the retention of more than 95% of the initial capacitance is observed for Te/NMC at a current density of 5 A g-1 and also for 1000 charge-discharge cycles.

2.
RSC Adv ; 11(4): 2405-2414, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35424182

RESUMO

Lead-free metal halide perovskites have nowadays become familiar owing to their potential use in solar cells and other optoelectronic applications. In this study, we carried out the structural, elastic, electronic, and optical properties of pure and metal (Mo/Tc) doped CsSnBr3 by using the density functional theory. The metal doping CsSnBr3 displays a narrowing band gap and as a result the optical functions exhibit high absorption and high conductivity in the visible region. Metal doping samples also reveal a high dielectric constant which indicates a low charge-carrier recombination rate and hence enhances the device performance. The optical absorption spectra of metal doped samples greatly shifted (red-shift) towards the lower energy region compared with the pure sample which creates a high-intensity peak in the visible region. The mechanical parameter reveals a highly ductile, soft, and flexible nature which indicates the suitability for use in thin films. The electronic band structure of metal-doped CsSnBr3 shows an intermediate state that assists the excited electron to pass on from valence band to conduction band. The overall study suggests that lead-free CsSn0.875Tc0.125Br3 perovskite is a promising candidate for solar cells and other optoelectronic applications.

3.
Nanoscale ; 12(34): 17590-17648, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32820785

RESUMO

Dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs) favor minimal environmental impact and low processing costs, factors that have prompted intensive research and development. In both cases, rare, expensive, and less stable metals (Pt and Au) are used as counter/back electrodes; this design increases the overall fabrication cost of commercial DSSC and PSC devices. Therefore, significant attempts have been made to identify possible substitutes. Carbon-based materials seem to be a favorable candidate for DSSCs and PSCs due to their excellent catalytic ability, easy scalability, low cost, and long-term stability. However, different carbon materials, including carbon black, graphene, and carbon nanotubes, among others, have distinct properties, which have a significant role in device efficiency. Herein, we summarize the recent advancement of carbon-based materials and review their synthetic approaches, structure-function relationship, surface modification, heteroatoms/metal/metal oxide incorporation, fabrication process of counter/back electrodes, and their effects on photovoltaic efficiency, based on previous studies. Finally, we highlight the advantages, disadvantages, and design criteria of carbon materials and fabrication challenges that inspire researchers to find low cost, efficient and stable counter/back electrodes for DSSCs and PSCs.

4.
Nanoscale ; 12(3): 1602-1616, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31867580

RESUMO

The development of a highly active, long-lasting, and cost-effective electrocatalyst as an alternative to platinum (Pt) is a vital issue for the commercialization of dye-sensitized solar cells. In this study, Ru-N-doped template-free mesoporous carbon (Ru-N-TMC) was prepared by the direct stabilization and carbonization of the poly(butyl acrylate)-b-polyacrylonitrile (PBA-b-PAN) block copolymer and ruthenium(iii) acetylacetonate [Ru(acac)3]. During the stabilization process, microphase separation occurred in the PBA-b-PAN block copolymer due to the incompatibility between the two blocks, and the PAN block transformed to N-doped semi-graphitic carbon. In the carbonization step, the PBA block was eliminated as a porous template, creating hierarchal mesopores/micropores. Meanwhile, Ru(acac)3 was decomposed to Ru, which was homogeneously distributed over the carbon substrate and anchored through N and O heteroatoms. The resulting Ru-N-TMC showed ultra-low charge transfer resistance (Rct = 0.034 Ω cm2) in the Co(bipyridine)33+/2+ reduction reaction, indicating very high electrocatalytic ability. Even though it is a transparent counter electrode (CE, average visible transmittance of 42.25%), covering a small fraction of the fluorine doped tin oxide (FTO)/glass substrate with Ru-N-TMC, it led to lower charge transfer resistance (Rct = 0.55 Ω cm2) compared to Pt (Rct = 1.00 Ω cm2). The Ru-N-TMC counter electrode exhibited a superior power conversion efficiency (PCE) of 11.42% compared to Pt (11.16%) when employed in SGT-021/Co(bpy)33+/2+ based dye-sensitized solar cells (DSSCs). Furthermore, a remarkable PCE of 10.13% and 8.64% from front and rear illumination, respectively, was obtained when the Ru-N-TMC counter electrode was employed in a bifacial DSSC. The outstanding catalytic activity and PCE of Ru-N-TMC were due to the high surface area of Ru-N-TMC, which contained numerous active species (Ru and N), easily facilitated to redox ions through the hierarchical microporous/mesoporous structure.

5.
Sci Rep ; 7(1): 11615, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912424

RESUMO

Static and dynamic heterogeneity of disordered system is one of the current topics in materials science. In disordered ferroelectric materials with random fields, dynamic polar nanoregions (PNRs) appear at Burns temperature and freeze into nanodomain state below Curie temperature (T C). This state is very sensitive to external electric field and aging by which it gradually switches into macrodomain state. However, the role of PNRs in such states below T C is still a puzzling issue of materials science. Electric field and aging effects of uniaxial ferroelectric Sr x Ba1-x Nb2O6 (x = 0.40, SBN40) single crystals were studied using Brillouin scattering to clarify the critical nature of PNRs in domain states below T C. On field heating, a broad anomaly in longitudinal acoustic (LA) velocity at low temperature region was due to an incomplete alignment of nanodomains caused by the interaction between PNRs. A sharp anomaly near T C was attributed to the complete switching of nanodomain to macrodomain state owing to the lack of interaction among PNRs. After isothermal aging below T C, the noticeable increase of LA velocity was observed. It was unaffected by cyclic temperature measurements up to T C, and recovered to initial state outside of a narrow temperature range above and below aging temperature.

6.
Sci Rep ; 7: 44448, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300152

RESUMO

In relaxor ferroelectrics, the role of randomly orientated polar nanoregions (PNRs) with weak random fields (RFs) is one of the most puzzling issues of materials science. The relaxation time of polarization fluctuations of PNRs, which manifests themselves as a central peak (CP) in inelastic light scattering, is the important physical quantity to understand the dynamics of PNRs. Here, the angular and temperature dependences of depolarized and polarized CPs in 0.44Pb(Mg1/3Nb2/3)O3-0.56PbTiO3 single crystals with weak RFs have been studied by Raman and Brillouin scattering, respectively. The CPs observed in Raman scattering show the very clear angular dependence which is consistent with the local tetragonal symmetry. It is different from the well-known local rhombohedral symmetry with strong RFs for Pb(Mg1/3Nb2/3)O3. In Brillouin scattering, depolarized and polarized CPs show two relaxation processes corresponding to transverse and longitudinal fluctuations of PNRs. The remarkable slowing down towards the Curie temperature was observed for transverse fluctuations in local tetragonal symmetry.

7.
J Phys Condens Matter ; 23(10): 105701, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21339584

RESUMO

We have performed ab initio calculations for a new high pressure phase of Ca-VI between 158 and 180 GPa. The study includes elastic parameters of monocrystalline and polycrystalline aggregates, electronic band structure, lattice dynamics and superconductivity. The calculations show that the orthorhombic Pnma structure is mechanically and dynamically stable in the pressure range studied. The structure is superconducting over the entire pressure range and the calculated T(c) (24.7 K with µ* = 0.1) is maximum at 172 GPa, which is close to the experimentally observed value of 25 K at 161 GPa.


Assuntos
Cálcio/química , Condutividade Elétrica , Elétrons , Pressão , Transição de Fase , Teoria Quântica , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA