Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534622

RESUMO

Drug delivery techniques based on polymers have been investigated for their potential to improve drug solubility, reduce systemic side effects, and controlled and targeted administration at infection site. In this study, we developed a co-polymeric hydrogel composed of graphene sheets (GNS), polyvinyl alcohol (PVA), and chitosan (CS) that is loaded with methotrexate (MTX) for in vitro liver cancer treatment. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) was employed to check the structural properties and surface morphology. Moreover, tests were conducted on the cytotoxicity, hemolytic activity, release kinetics, swelling behaviour and degradation of hydrogels. A controlled release of drug from hydrogel in PBS at pH 7.4 was examined using release kinetics. Maximal drug release in six hours was 97.34%. The prepared hydrogels did not encourage the HepG2 growth and were non-hemolytic. The current study highlights the potential of GNS-based hydrogel loaded with MTX as an encouraging therapy for hepatocellular carcinoma. HepG2 cell viability of MTX-loaded CS-PVA-GNS hydrogel was (IC50 5.87 µg/200 mL) in comparison to free MTX (IC50 5.03 µg/200 mL). These outcomes recommend that hydrogels with GNS ensure improved drug delivery in cancer microenvironment while lessening adverse consequences on healthy cells.

2.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38230950

RESUMO

The semiconductor/insulator blends for organic field-effect transistors are a potential solution to improve the charge transport in the active layer by inducing phase separation in the blends. However, the technique is less investigated for long-chain conducting polymers such as Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT), and lateral phase separation is generally reported due to the instability during solvent evaporation, which results in degraded device performance. Herein, we report how to tailor the dominant mechanism of phase separation in such blends and the molecular assembly of the polymer. For DPPDTT/PMMA blends, we found that for higher DPPDTT concentrations (more than 75%) where the vertical phase separation mechanism is dominant, PMMA assisted in the self-assembly of DPPDTT to form nanowires and micro-transport channels on top of PMMA. The formation of nanowires yielded 13 times higher mobility as compared to pristine devices. For blend ratios with DPPDTT ≤ 50%, both the competing mechanisms, vertical and lateral phase separation, are taking place. It resulted in somewhat lower charge carrier mobilities. Hence, our results show that by systematic tuning of the blend ratio, PMMA can act as an excellent binding material in long-chain polymers such as DPPDTT and produce vertically stratified and aligned structures to ensure high mobility devices.

3.
R Soc Open Sci ; 10(6): 221272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325589

RESUMO

Long-standing research efforts have enabled the widespread introduction of organic field-effect transistors (OFETs) in next-generation technologies. Concurrently, environmental and operational stability is the major bottleneck in commercializing OFETs. The underpinning mechanism behind these instabilities is still elusive. Here we demonstrate the effect of ambient air on the performance of p-type polymer field-effect transistors. After exposure to ambient air, the device showed significant variations in performance parameters for around 30 days, and then relatively stable behaviour was observed. Two competing mechanisms influencing environmental stability are the diffusion of moisture and oxygen in the metal-organic interface and the active organic layer of the OFET. We measured the time-dependent contact and channel resistances to probe which mechanism is dominant. We found that the dominant role in the degradation of the device stability is the channel resistance rather than the contact resistance. Through time-dependent Fourier transform infrared (FTIR) analysis, we systematically prove that moisture and oxygen cause performance variation in OFETs. FTIR spectra revealed that water and oxygen interact with the polymer chain and perturb its conjugation, thus resulting in degraded performance of the device upon prolonged exposure to ambient air. Our results are important in addressing the environmental instability of organic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA