Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
bioRxiv ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826279

RESUMO

The primary visual cortex (V1) in humans and many animals is comprised of fine-scale neuronal ensembles that respond preferentially to the stimulation of one eye over the other, also known as the ocular dominance columns (ODCs). Despite its importance in shaping our perception, to date, the nature of the functional interactions between ODCs has remained poorly understood. In this work, we aimed to improve our understanding of the interaction mechanisms between fine-scale neuronal structures distributed within V1. To that end, we applied high-resolution functional MRI to study mechanisms of functional connectivity between ODCs. Using this technique, we quantified the level of functional connectivity between ODCs as a function of the ocular preference of ODCs, showing that alike ODCs are functionally more connected compared to unalike ones. Through these experiments, we aspired to contribute to filling the gap in our knowledge of the functional connectivity of ODCs in humans as compared to animals.

2.
Front Neurosci ; 18: 1375530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774790

RESUMO

The locus coeruleus (LC) is a key brain structure implicated in cognitive function and neurodegenerative disease. Automatic segmentation of the LC is a crucial step in quantitative non-invasive analysis of the LC in large MRI cohorts. Most publicly available imaging databases for training automatic LC segmentation models take advantage of specialized contrast-enhancing (e.g., neuromelanin-sensitive) MRI. Segmentation models developed with such image contrasts, however, are not readily applicable to existing datasets with conventional MRI sequences. In this work, we evaluate the feasibility of using non-contrast neuroanatomical information to geometrically approximate the LC region from standard 3-Tesla T1-weighted images of 20 subjects from the Human Connectome Project (HCP). We employ this dataset to train and internally/externally evaluate two automatic localization methods, the Expected Label Value and the U-Net. For out-of-sample segmentation, we compare the results with atlas-based segmentation, as well as test the hypothesis that using the phase image as input can improve the robustness. We then apply our trained models to a larger subset of HCP, while exploratorily correlating LC imaging variables and structural connectivity with demographic and clinical data. This report provides an evaluation of computational methods estimating neural structure.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38665679

RESUMO

We tackle classification based on brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain-connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple heads. The proposed network is a simple design that employs different heads involving graph convolutions focused on edges and nodes, thoroughly capturing representations from the input data. To test the ability of our model to extract complementary and representative features from brain connectivity data, we chose the task of sex classification. This quantifies the degree to which the connectome varies depending on the sex, which is important for improving our understanding of health and disease in both sexes. We show experiments on two publicly available datasets: PREVENT-AD (347 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.

4.
bioRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38328208

RESUMO

The locus coeruleus (LC) is a key brain structure implicated in cognitive function and neurodegenerative disease. Automatic segmentation of the LC is a crucial step in quantitative non-invasive analysis of the LC in large MRI cohorts. Most publicly available imaging databases for training automatic LC segmentation models take advantage of specialized contrast-enhancing (e.g., neuromelanin-sensitive) MRI. Segmentation models developed with such image contrasts, however, are not readily applicable to existing datasets with conventional MRI sequences. In this work, we evaluate the feasibility of using non-contrast neuroanatomical information to geometrically approximate the LC region from standard 3-Tesla T1-weighted images of 20 subjects from the Human Connectome Project (HCP). We employ this dataset to train and internally/externally evaluate two automatic localization methods, the Expected Label Value and the U-Net. We also test the hypothesis that using the phase image as input can improve the robustness of out-of-sample segmentation. We then apply our trained models to a larger subset of HCP, while exploratorily correlating LC imaging variables and structural connectivity with demographic and clinical data. This report contributes and provides an evaluation of two computational methods estimating neural structure.

5.
Alzheimers Dement (Amst) ; 15(4): e12511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111597

RESUMO

Introduction: Discovery of the associations between brain structural connectivity and clinical and demographic variables can help to better understand the vulnerability and resilience of the brain architecture to neurodegenerative diseases and to discover biomarkers. Methods: We used four diffusion-MRI databases, three related to Alzheimer's disease (AD), to exploratorily correlate structural connections between 85 brain regions with non-MRI variables, while stringently correcting the significance values for multiple testing and ruling out spurious correlations via careful visual inspection. We repeated the analysis with brain connectivity augmented with multi-synaptic neural pathways. Results: We found 85 and 101 significant relationships with direct and augmented connectivity, respectively, which were generally stronger for the latter. Age was consistently linked to decreased connectivity, and healthier clinical scores were generally linked to increased connectivity. Discussion: Our findings help to elucidate which structural brain networks are affected in AD and aging and highlight the importance of including indirect connections.

6.
Mach Learn Med Imaging ; 14348: 382-392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37854585

RESUMO

Interpretability in Graph Convolutional Networks (GCNs) has been explored to some extent in general in computer vision; yet, in the medical domain, it requires further examination. Most of the interpretability approaches for GCNs, especially in the medical domain, focus on interpreting the output of the model in a post-hoc fashion. In this paper, we propose an interpretable attention module (IAM) that explains the relevance of the input features to the classification task on a GNN Model. The model uses these interpretations to improve its performance. In a clinical scenario, such a model can assist the clinical experts in better decision-making for diagnosis and treatment planning. The main novelty lies in the IAM, which directly operates on input features. IAM learns the attention for each feature based on the unique interpretability-specific losses. We show the application of our model on two publicly available datasets, Tadpole and the UK Biobank (UKBB). For Tadpole we choose the task of disease classification, and for UKBB, age, and sex prediction. The proposed model achieves an increase in an average accuracy of 3.2% for Tadpole and 1.6% for UKBB sex and 2% for the UKBB age prediction task compared to the state-of-the-art. Further, we show exhaustive validation and clinical interpretation of our results.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37691967

RESUMO

In population and longitudinal imaging studies that employ deformable image registration, more accurate results can be achieved by initializing deformable registration with the results of affine registration where global misalignments have been considerably reduced. Such affine registration, however, is limited to linear transformations and it cannot account for large nonlinear anatomical variations, such as those between pre- and post-operative images or across different subject anatomies. In this work, we introduce a new intermediate deformable image registration (IDIR) technique that recovers large deformations via windowed cross-correlation, and provide an efficient implementation based on the fast Fourier transform. We evaluate our method on 2D X-ray and 3D magnetic resonance images, demonstrating its ability to align substantial nonlinear anatomical variations within a few iterations.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37621555

RESUMO

In the course of diffusion, water molecules experience varying values for the relaxation-time property of the underlying tissue, a factor that has not been accounted for in diffusion MRI (dMRI) modeling. Accordingly, we derive a relationship between the diffusion profile measured by dMRI and the spatial gradient of the image, and subsequently estimate the latter from the former. We test our hypothesized relationship via dMRI of the human brain (a public in vivo image and an acquired ex vivo stimulated-echo image), showing statistically significant results that may be due to our model and/or the confounding factor of "fiber continuity".

9.
Artigo em Inglês | MEDLINE | ID: mdl-37565069

RESUMO

Motion artifacts can negatively impact diagnosis, patient experience, and radiology workflow especially when a patient recall is required. Detecting motion artifacts while the patient is still in the scanner could potentially improve workflow and reduce costs by enabling immediate corrective action. We demonstrate in a clinical k-space dataset that using cross-correlation between adjacent phase-encoding lines can detect motion artifacts directly from raw k-space in multi-shot multi-slice scans. We train a split-attention residual network to examine the performance in predicting motion artifact severity. The network is trained on simulated data and tested on real clinical data.

10.
bioRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37461543

RESUMO

INTRODUCTION: Discovery of the associations between brain structural connectivity and clinical and demographic variables can help to better understand the vulnerability and resilience of the brain architecture to neurodegenerative diseases and to discover biomarkers. METHODS: We used four diffusion-MRI databases, three related to Alzheimer's disease, to exploratorily correlate structural connections between 85 brain regions with non-MRI variables, while stringently correcting the significance values for multiple testing and ruling out spurious correlations via careful visual inspection. We repeated the analysis with brain connectivity augmented with multi-synaptic neural pathways. RESULTS: We found 85 and 101 significant relationships with direct and augmented connectivity, respectively, which were generally stronger for the latter. Age was consistently linked to decreased connectivity, and healthier clinical scores were generally linked to increased connectivity. DISCUSSION: Our findings help to elucidate which structural brain networks are affected in Alzheimer's disease and aging and highlight the importance of including indirect connections.

11.
ArXiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37205262

RESUMO

We tackle classification based on brain connectivity derived from diffusion magnetic resonance images. We propose a machine-learning model inspired by graph convolutional networks (GCNs), which takes a brain connectivity input graph and processes the data separately through a parallel GCN mechanism with multiple heads. The proposed network is a simple design that employs different heads involving graph convolutions focused on edges and nodes, capturing representations from the input data thoroughly. To test the ability of our model to extract complementary and representative features from brain connectivity data, we chose the task of sex classification. This quantifies the degree to which the connectome varies depending on the sex, which is important for improving our understanding of health and disease in both sexes. We show experiments on two publicly available datasets: PREVENT-AD (347 subjects) and OASIS3 (771 subjects). The proposed model demonstrates the highest performance compared to the existing machine-learning algorithms we tested, including classical methods and (graph and non-graph) deep learning. We provide a detailed analysis of each component of our model.

12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3804-3808, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892064

RESUMO

Conventionally, as a preprocessing step, functional MRI (fMRI) data are spatially smoothed before further analysis, be it for activation mapping on task-based fMRI or functional connectivity analysis on resting-state fMRI data. When images are smoothed volumetrically, however, isotropic Gaussian kernels are generally used, which do not adapt to the underlying brain structure. Alternatively, cortical surface smoothing procedures provide the benefit of adapting the smoothing process to the underlying morphology, but require projecting volumetric data on to the surface. In this paper, leveraging principles from graph signal processing, we propose a volumetric spatial smoothing method that takes advantage of the gray-white and pial cortical surfaces, and as such, adapts the filtering process to the underlying morphological details at each point in the cortex.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Processamento de Sinais Assistido por Computador
13.
Neuroimage ; 244: 118627, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607020

RESUMO

The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases.


Assuntos
Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Colículos Superiores/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
14.
Proc IEEE Int Symp Biomed Imaging ; 2021: 1586-1590, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34084267

RESUMO

In this work, we leverage the Laplacian eigenbasis of voxel-wise white matter (WM) graphs derived from diffusion-weighted MRI data, dubbed WM harmonics, to characterize the spatial structure of WM fMRI data. Our motivation for such a characterization is based on studies that show WM fMRI data exhibit a spatial correlational anisotropy that coincides with underlying fiber patterns. By quantifying the energy content of WM fMRI data associated with subsets of WM harmonics across multiple spectral bands, we show that the data exhibits notable subtle spatial modulations under functional load that are not manifested during rest. WM harmonics provide a novel means to study the spatial dynamics of WM fMRI data, in such way that the analysis is informed by the underlying anatomical structure.

15.
Sci Rep ; 11(1): 11586, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078935

RESUMO

Computer-aided detection of brain lesions from volumetric magnetic resonance imaging (MRI) is in demand for fast and automatic diagnosis of neural diseases. The template-matching technique can provide satisfactory outcome for automatic localization of brain lesions; however, finding the optimal template size that maximizes similarity of the template and the lesion remains challenging. This increases the complexity of the algorithm and the requirement for computational resources, while processing large MRI volumes with three-dimensional (3D) templates. Hence, reducing the computational complexity of template matching is needed. In this paper, we first propose a mathematical framework for computing the normalized cross-correlation coefficient (NCCC) as the similarity measure between the MRI volume and approximated 3D Gaussian template with linear time complexity, [Formula: see text], as opposed to the conventional fast Fourier transform (FFT) based approach with the complexity [Formula: see text], where [Formula: see text] is the number of voxels in the image and [Formula: see text] is the number of tried template radii. We then propose a mathematical formulation to analytically estimate the optimal template radius for each voxel in the image and compute the NCCC with the location-dependent optimal radius, reducing the complexity to [Formula: see text]. We test our methods on one synthetic and two real multiple-sclerosis databases, and compare their performances in lesion detection with FFT and a state-of-the-art lesion prediction algorithm. We demonstrate through our experiments the efficiency of the proposed methods for brain lesion detection and their comparable performance with existing techniques.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
16.
Brain Connect ; 11(7): 566-583, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34042511

RESUMO

Background: Structural brain connectivity has been shown to be sensitive to the changes that the brain undergoes during Alzheimer's disease (AD) progression. Methods: In this work, we used our recently proposed structural connectivity quantification measure derived from diffusion magnetic resonance imaging, which accounts for both direct and indirect pathways, to quantify brain connectivity in dementia. We analyzed data from the second phase of Alzheimer's Disease Neuroimaging Initiative and third release in the Open Access Series of Imaging Studies data sets to derive relevant information for the study of the changes that the brain undergoes in AD. We also compared these data sets to the Human Connectome Project data set, as a reference, and eventually validated externally on two cohorts of the European DTI Study in Dementia database. Results: Our analysis shows expected trends of mean conductance with respect to age and cognitive scores, significant age prediction values in aging data, and regional effects centered among subcortical regions, and cingulate and temporal cortices. Discussion: Results indicate that the conductance measure has prediction potential, especially for age, that age and cognitive scores largely overlap, and that this measure could be used to study effects such as anticorrelation in structural connections. Impact statement This work presents a methodology and a set of analyses that open new possibilities in the study of healthy and pathological aging. The methodology used here is sensitive to direct and indirect pathways in deriving brain connectivity measures from diffusion-weighted magnetic resonance imaging, and therefore provides information that many state-of-the-art methods do not account for. As a result, this technique may provide the research community with ways to detect subtle effects of healthy aging and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Conectoma , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
17.
Neuroimage ; 237: 118095, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000402

RESUMO

Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) contrast in WM and its detectability. However, an accumulating body of studies has provided solid evidence of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio-temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orientation, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based description of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific spatial filters that adapt to a subject's unique WM structure at each position in the WM that they are applied at. We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human Connectome Project's 100-unrelated subject dataset, across seven functional tasks, showing that the proposed method enables the detection of streamline-like activations within axonal bundles.


Assuntos
Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Substância Branca , Adulto , Humanos , Modelos Teóricos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
18.
IEEE Trans Med Imaging ; 40(6): 1702-1710, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33687840

RESUMO

The use of multiple atlases is common in medical image segmentation. This typically requires deformable registration of the atlases (or the average atlas) to the new image, which is computationally expensive and susceptible to entrapment in local optima. We propose to instead consider the probability of all possible atlas-to-image transformations and compute the expected label value (ELV), thereby not relying merely on the transformation deemed "optimal" by the registration method. Moreover, we do so without actually performing deformable registration, thus avoiding the associated computational costs. We evaluate our ELV computation approach by applying it to brain, liver, and pancreas segmentation on datasets of magnetic resonance and computed tomography images.


Assuntos
Encéfalo , Tomografia Computadorizada por Raios X , Algoritmos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Probabilidade
19.
Proc IEEE Int Symp Biomed Imaging ; 2020: 283-287, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32587665

RESUMO

Identification of the specific brain networks that are vulnerable or resilient in neurodegenerative diseases can help to better understand the disease effects and derive new connectomic imaging biomarkers. In this work, we use brain connectivity to find pairs of structural connections that are negatively correlated with each other across Alzheimer's disease (AD) and healthy populations. Such anti-correlated brain connections can be informative for identification of compensatory neuronal pathways and the mechanism of brain networks' resilience to AD. We find significantly anti-correlated connections in a public diffusion-MRI database, and then validate the results on other databases.

20.
Proc IEEE Int Symp Biomed Imaging ; 2019: 334-338, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31341547

RESUMO

The use of multiple atlases is common in medical image segmentation. This typically requires deformable registration of the atlases (or the average atlas) to the new image, which is computationally expensive and susceptible to entrapment in local optima. We propose to instead consider the probability of all possible transformations and compute the expected label value (ELV), thereby not relying merely on the transformation resulting from the registration. Moreover, we do so without actually performing deformable registration, thus avoiding the associated computational costs. We evaluate our ELV computation approach by applying it to liver segmentation on a dataset of computed tomography (CT) images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA