Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 127(8): e2022JA030661, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36247330

RESUMO

Since the advent of the Space Age, the importance of understanding and forecasting relativistic electron fluxes in the Earth's radiation belts has been steadily growing due to the threat that such particles pose to satellite electronics. Here, we provide a model of long-duration periods of high time-integrated 2-MeV electron flux deep inside the outer radiation belt, based on the significant correlation obtained in 2001-2017 between time-integrated electron flux measured by satellites and a measure of the preceding time-integrated homogenized aa H geomagnetic index. We show that this correlation is likely due to a stronger cumulative chorus wave-driven acceleration of relativistic electrons and a stronger cumulative inward radial diffusion of such electrons during periods of higher time-integrated geomagnetic activity. Return levels of 2-MeV electron flux are provided based on Extreme Value analysis of time-integrated geomagnetic activity over 1868-2017, in rough agreement with estimates based on 20-year data sets of measured flux. A high correlation is also found between our measure of time-integrated geomagnetic activity averaged over each solar cycle and averaged sunspot numbers, potentially paving the way for forecasts of time-integrated relativistic electron flux during future solar cycles based on predictions of solar activity.

2.
Phys Rev Lett ; 121(13): 135102, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30312045

RESUMO

Despite the importance of millisecond duration spatial structures [chorus wave nonlinearity or time domain structures (TDS)] to plasma dynamics, there have been no direct observations of the generation and interaction of these waves and TDS with electrons at the millisecond timescale required for their understanding. Through superposition of 0.195 ms Magnetospheric Multiscale Satellite electron measurements inside 37 superposed, millisecond duration electron holes, the first observations of electron spectra and pitch angle distributions on a submillisecond timescale have been obtained. They show that keV electrons inside the superposed electron hole are accelerated by several hundred volts and that the spectrum of electrons inside the electron hole contain several maxima and minima that are explained by a model of electron energy changes on entering the holes. We report the first observation of trapped electrons inside the TDS, in accordance with the theoretical requirement that such electrons must be present in order to form the phase space holes. Mechanisms of electron acceleration by electron holes (through perpendicular energy gain as the TDS moves into a converging magnetic field) and scattering (due to the perpendicular electric field) are discussed.

3.
Phys Rev Lett ; 120(19): 195101, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799234

RESUMO

We present surprising observations by the NASA Van Allen Probes spacecraft of whistler waves with substantial electric field power at harmonics of the whistler wave fundamental frequency. The wave power at harmonics is due to a nonlinearly steepened whistler electrostatic field that becomes possible in the two-temperature electron plasma due to the whistler wave coupling to the electron-acoustic mode. The simulation and analytical estimates show that the steepening takes a few tens of milliseconds. The hydrodynamic energy cascade to higher frequencies facilitates efficient energy transfer from cyclotron resonant electrons, driving the whistler waves, to lower energy electrons.

4.
Nat Commun ; 9: 16197, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29578205

RESUMO

This corrects the article DOI: 10.1038/ncomms8143.

5.
Nat Commun ; 6: 8143, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25975615

RESUMO

Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA