Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2744: 403-441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683334

RESUMO

BOLD, the Barcode of Life Data System, supports the acquisition, storage, validation, analysis, and publication of DNA barcodes, activities requiring the integration of molecular, morphological, and distributional data. Its pivotal role in curating the reference library of DNA barcodes, coupled with its data management and analysis capabilities, makes it a central resource for biodiversity science. It enables rapid, accurate identification of specimens and also reveals patterns of genetic diversity and evolutionary relationships among taxa.Launched in 2005, BOLD has become an increasingly powerful tool for advancing the understanding of planetary biodiversity. It currently hosts 17 million specimen records and 14 million barcodes that provide coverage for more than a million species from every continent and ocean. The platform has the long-term goal of providing a consistent, accurate system for identifying all species of eukaryotes.BOLD's integrated analytical tools, full data lifecycle support, and secure collaboration framework distinguish it from other biodiversity platforms. BOLD v4 brought enhanced data management and analysis capabilities as well as novel functionality for data dissemination and publication. Its next version will include features to strengthen its utility to the research community, governments, industry, and society-at-large.


Assuntos
Biodiversidade , Biologia Computacional , Código de Barras de DNA Taxonômico , Código de Barras de DNA Taxonômico/métodos , Biologia Computacional/métodos , Software , DNA/genética
3.
Mol Ecol Resour ; 22(2): 803-822, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34562055

RESUMO

To associate specimens identified by molecular characters to other biological knowledge, we need reference sequences annotated by Linnaean taxonomy. In this study, we (1) report the creation of a comprehensive reference library of DNA barcodes for the arthropods of an entire country (Finland), (2) publish this library, and (3) deliver a new identification tool for insects and spiders, as based on this resource. The reference library contains mtDNA COI barcodes for 11,275 (43%) of 26,437 arthropod species known from Finland, including 10,811 (45%) of 23,956 insect species. To quantify the improvement in identification accuracy enabled by the current reference library, we ran 1000 Finnish insect and spider species through the Barcode of Life Data system (BOLD) identification engine. Of these, 91% were correctly assigned to a unique species when compared to the new reference library alone, 85% were correctly identified when compared to BOLD with the new material included, and 75% with the new material excluded. To capitalize on this resource, we used the new reference material to train a probabilistic taxonomic assignment tool, FinPROTAX, scoring high success. For the full-length barcode region, the accuracy of taxonomic assignments at the level of classes, orders, families, subfamilies, tribes, genera, and species reached 99.9%, 99.9%, 99.8%, 99.7%, 99.4%, 96.8%, and 88.5%, respectively. The FinBOL arthropod reference library and FinPROTAX are available through the Finnish Biodiversity Information Facility (www.laji.fi) at https://laji.fi/en/theme/protax. Overall, the FinBOL investment represents a massive capacity-transfer from the taxonomic community of Finland to all sectors of society.


Assuntos
Artrópodes , Animais , Artrópodes/classificação , Biodiversidade , Código de Barras de DNA Taxonômico , Finlândia , Biblioteca Gênica
4.
Genome Biol ; 20(1): 275, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31843001

RESUMO

BACKGROUND: Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and provide an opportunity for comprehensive annotation of TEs. Numerous methods exist for annotation of each class of TEs, but their relative performances have not been systematically compared. Moreover, a comprehensive pipeline is needed to produce a non-redundant library of TEs for species lacking this resource to generate whole-genome TE annotations. RESULTS: We benchmark existing programs based on a carefully curated library of rice TEs. We evaluate the performance of methods annotating long terminal repeat (LTR) retrotransposons, terminal inverted repeat (TIR) transposons, short TIR transposons known as miniature inverted transposable elements (MITEs), and Helitrons. Performance metrics include sensitivity, specificity, accuracy, precision, FDR, and F1. Using the most robust programs, we create a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a filtered non-redundant TE library for annotation of structurally intact and fragmented elements. EDTA also deconvolutes nested TE insertions frequently found in highly repetitive genomic regions. Using other model species with curated TE libraries (maize and Drosophila), EDTA is shown to be robust across both plant and animal species. CONCLUSIONS: The benchmarking results and pipeline developed here will greatly facilitate TE annotation in eukaryotic genomes. These annotations will promote a much more in-depth understanding of the diversity and evolution of TEs at both intra- and inter-species levels. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.


Assuntos
Elementos de DNA Transponíveis , Anotação de Sequência Molecular/métodos , Animais , Benchmarking , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA