Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 9: 259, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559984

RESUMO

Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA) is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species. Recently, we reported that functional wheat inositol pentakisphosphate kinase (TaIPK1) is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat. Four non-segregating RNAi lines of wheat were selected for detailed study (S3-D-6-1; S6-K-3-3; S6-K-6-10 and S16-D-9-5). Homozygous transgenic RNAi lines at T4 seeds with a decreased transcript of TaIPK1 showed 28-56% reduction of the PA. Silencing of IPK1 also resulted in increased free phosphate in mature grains. Although, no phenotypic changes in the spike was observed but, lowering of grain PA resulted in the reduced number of seeds per spikelet. The lowering of grain PA was also accompanied by a significant increase in iron (Fe) and zinc (Zn) content, thereby enhancing their molar ratios (Zn:PA and Fe:PA). Overall, this work suggests that IPK1 is a promising candidate for employing genome editing tools to address the mineral accumulation in wheat grains.

2.
Sci Rep ; 6: 39293, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27995999

RESUMO

Approaches enabling efficient phosphorus utilization in crops are of great importance. In cereal crop like wheat, utilization of inorganic phosphate (Pi) is high and mature grains are the major sink for Pi utilization and storage. Research that addresses the importance of the Pi homeostasis in developing grains is limited. In an attempt to understand the Pi homeostasis in developing wheat grains, we identified twelve new phosphate transporters (PHT), these are phyologentically well distributed along with the members reported from Arabidopsis and rice. Enhanced expression of PHT1-subfamily genes was observed in roots subjected to the Pi starvation suggesting their active role in Pi homeostasis. Differential expression patterns of all the PHT genes during grain filling stages suggested their importance in the filial tissues. Additionally, high accumulation of Pi and total P in aleurone correlates well with the expression of TaPHTs and other phosphate starvation related genes. Tissue specific transcript accumulation of TaPHT1.1, TaPHT1.2, TaPHT1.4 in aleurone; TaPHT3.1 in embryo and TaPHT4.2 in the endosperm was observed. Furthermore, their transcript abundance was affected in low phytate wheat grains. Altogether, this study helps in expanding the knowledge and prioritize the candidate wheat Pi-transporters to modulate the Pi homeostasis in cereal grains.


Assuntos
Arabidopsis/metabolismo , Oryza/metabolismo , Proteínas de Transporte de Fosfato/genética , Raízes de Plantas/metabolismo , Triticum/metabolismo , Arabidopsis/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Oryza/genética , Proteínas de Transporte de Fosfato/biossíntese , Fosfatos/metabolismo , RNA Mensageiro/genética , Análise de Sequência de DNA , Triticum/genética
3.
Environ Microbiol ; 18(8): 2446-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26626627

RESUMO

Metallothioneins (MTs) are small, cysteine-rich peptides involved in intracellular sequestration of heavy metals in eukaryotes. We examined the role in metal homeostasis and detoxification of an MT from the ectomycorrhizal fungus Pisolithus albus (PaMT1). PaMT1 encodes a 35 amino acid-long polypeptide, with 7 cysteine residues; most of them part of a C-x-C motif found in other known basidiomycete MTs. The expression levels of PaMT1 increased as a function of increased external Cu and Cd concentrations and were higher with Cu than with Cd. Heterologous complementation assays in metal-sensitive yeast mutants indicated that PaMT1 encodes a polypeptide capable of conferring higher tolerance to both Cu and Cd. Eucalyptus tereticornis plantlets colonized with P. albus grown in the presence of Cu and Cd showed better growth compared with those with non-mycorrhizal plants. Higher PaMT1 expression levels were recorded in mycorrhizal plants grown in the presence of Cu and Cd compared with those in control mycorrhizal plants not exposed to heavy metals. These data provide the first evidence to our knowledge that fungal MTs could protect ectomycorrhizal fungi from heavy metal stress and in turn help the plants to establish in metal-contaminated sites.


Assuntos
Basidiomycota/metabolismo , Cádmio/toxicidade , Cobre/toxicidade , Eucalyptus/microbiologia , Metalotioneína/metabolismo , Micorrizas/metabolismo , Sequência de Aminoácidos , Eucalyptus/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/fisiologia , Alinhamento de Sequência , Simbiose
4.
Front Plant Sci ; 6: 488, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191068

RESUMO

The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

5.
Plants (Basel) ; 4(2): 298-319, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-27135330

RESUMO

Phytic acid (PA) biosynthesis pathway genes were reported from multiple crop species. PA accumulation was enhanced during grain filling and at that time, hormones like Abscisic acid (ABA) and Gibberellic acid (GA3) interplay to control the process of seed development. Regulation of wheat PA pathway genes has not yet been reported in seeds. In an attempt to find the clues for the regulation by hormones, the promoter region of wheat PA pathway genes was analyzed for the presence of cis-elements. Multiple cis-elements of those known to be involved for ABA, GA3, salicylic acid (SA), and cAMP sensing were identified in the promoters of PA pathway genes. Eight genes (TaIMP, TaITPK1-4, TaPLC1, TaIPK2 and TaIPK1) involved in the wheat PA biosynthesis pathway were selected for the expression studies. The temporal expression response was studied in seeds treated with ABA and GA3 using quantitative real time PCR. Our results suggested that exogenous application of ABA induces few PA pathway genes in wheat grains. Comparison of expression profiles for PA pathway for GA3 and ABA suggested the antagonistic regulation of certain genes. Additionally, to reveal stress responses of wheat PA pathway genes, expression was also studied in the presence of SA and cAMP. Results suggested SA specific differential expression of few genes, whereas, overall repression of genes was observed in cAMP treated samples. This study is an effort to understand the regulation of PA biosynthesis genes in wheat.

6.
Plant Sci ; 224: 74-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908508

RESUMO

In cereals, phytic acid (PA) or inositol hexakisphosphate (IP6) is a well-known phosphate storage compound as well as major chelator of important micronutrients (iron, zinc, calcium, etc.). Genes involved in the late phases of PA biosynthesis pathway are known in crops like maize, soybeans and barley but none have been reported from wheat. Our in silico analysis identified six wheat genes that might be involved in the biosynthesis of inositol phosphates. Four of the genes were inositol tetraphosphate kinases (TaITPK1, TaITPK2, TaITPK3, and TaITPK4), and the other two genes encode for inositol triphosphate kinase (TaIPK2) and inositol pentakisphosphate kinase (TaIPK1). Additionally, we identified a homolog of Zmlpa-1, an ABCC subclass multidrug resistance-associated transporter protein (TaMRP3) that is putatively involved in PA transport. Analyses of the mRNA expression levels of these seven genes showed that they are differentially expressed during seed development, and that some are preferentially expressed in aleurone tissue. These results suggest selective roles during PA biosynthesis, and that both lipid-independent and -dependent pathways are active in developing wheat grains. TaIPK1 and TaMRP3 were able to complement the yeast ScΔipk1 and ScΔycf1 mutants, respectively, providing evidence that the wheat genes have the expected biochemical functions. This is the first comprehensive study of the wheat genes involved in the late phase of PA biosynthesis. Knowledge generated from these studies could be utilized to develop strategies for generating low phyate wheat.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fosfotransferases/genética , Ácido Fítico/biossíntese , Sementes/metabolismo , Triticum/genética , Fosfotransferases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA