Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534412

RESUMO

Gnomoniopsis castaneae is responsible for brown or chalky nut rot in sweet chestnut (Castanea sativa), causing heavy reductions in nut production. Controlling it is challenging, due to its inconspicuous infections, erratic colonization of host tissues and endophytic lifestyle. Fungicides are not applicable because they are prohibited in chestnut forests and strongly discouraged in fruit chestnut groves. Trichoderma species are safe and wide-spectrum biocontrol agents (BCAs), with a variety of beneficial effects in plant protection. This study tested selected strains of T. viride, T. harzianum and T. atroviride for their ability to suppress G. castaneae. Field experiments were conducted in four chestnut groves (two test plots plus two controls) at two sites with a different microclimate. As the size of the trees were a major drawback for uniform and effective treatments, the Trichoderma strains were delivered directly by trunk injection, using the BITE® (Blade for Infusion in TrEes) endotherapic tool. The BCA application, repeated twice in two subsequent years, significantly reduced nut rot incidence, with a more marked, presumably cumulative, effect in the second year. Our data showed the tested Trichoderma strains retain great potential for the biological control of G. castaneae in chestnut groves. The exploitation of Trichoderma spp. as biopesticides is a novelty in the forestry sector and proves the benefits of these microbes in plant disease protection.

2.
Pathogens ; 12(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36839436

RESUMO

Thousand cankers disease (TCD) is a new deadly disease in walnut trees (Juglans spp.), which is plaguing commercial plantations, natural groves, and ornamental black walnut trees (Juglans nigra) in their native and invasion areas in the US and, more recently, in artificial plantations and amenity trees in the newly-invaded areas in Europe (Italy). This insect/fungus complex arises from the intense trophic activity of the bark beetle vector Pityophthorus juglandis in the phloem of Juglans spp. and the subsequent development of multiple Geosmithia morbida cankers around beetles' entry/exit holes. After an analysis of the main biological and ecological traits of both members of this insect/fungus complex, this review explores the options available for TCD prevention and management. Special focus is given to those diagnostic tools developed for disease detection, surveillance, and monitoring, as well as to existing phytosanitary regulations, protocols, and measures that comply with TCD eradication and containment. Only integrated disease management can effectively curtail the pervasive spread of TCD, thus limiting the damage to natural ecosystems, plantations, and ornamental walnuts.

3.
Plants (Basel) ; 11(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35567240

RESUMO

Walnut species (Juglans spp.) are multipurpose trees, widely employed in plantation forestry for high-quality timber and nut production, as well as in urban greening as ornamental plants. These species are currently threatened by the thousand cankers disease (TCD) complex, an insect-fungus association which involves the ascomycete Geosmithia morbida (GM) and its vector, the bark beetle Pityophthorus juglandis. While TCD has been studied extensively where it originated in North America, little research has been carried out in Europe, where it was more recently introduced. A key step in research to cope with this new phytosanitary emergency is the development of effective molecular detection tools. In this work, we report two accurate molecular methods for the diagnosis of GM, based on LAMP (real-time and visual) and SYBR Green qPCR, which are complimentary to and integrated with similar recently developed assays. Our protocols detected GM DNA from pure mycelium and from infected woody tissue with high accuracy, sensitivity, and specificity, without cross-reactivity to a large panel of taxonomically related species. The precision and robustness of our tests guarantee high diagnostic standards and could be used to support field diagnostic end-users in TCD monitoring and surveillance campaigns.

4.
MycoKeys ; 73: 87-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061781

RESUMO

The genus Caliciopsis (Eurotiomycetes, Coryneliales) includes saprobic and plant pathogenic species. Caliciopsis canker is caused by Caliciopsis pinea Peck, a species first reported in the 19th century in North America. In recent years, increasing numbers of outbreaks of Caliciopsis canker have been reported on different Pinus spp. in the eastern USA. In Europe, the disease has only occasionally been reported causing cankers, mostly on Pinus radiata in stressed plantations. The aim of this study was to clarify the taxonomy of Caliciopsis specimens collected from infected Pinus spp. in Europe and North America using an integrative approach, combining morphology and phylogenetic analyses of three loci. The pathogenicity of the fungus was also considered. Two distinct groups were evident, based on morphology and multilocus phylogenetic analyses. These represent the known pathogen Caliciopsis pinea that occurs in North America and a morphologically similar, but phylogenetically distinct, species described here as Caliciopsis moriondi sp. nov., found in Europe and at least one location in eastern North America. Caliciopsis moriondi differs from C. pinea in various morphological features including the length of the ascomata, as well as their distribution on the stromata.

5.
Biotechniques ; 69(1): 369-375, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32336113

RESUMO

Fusarium circinatum is the causal agent of pitch canker, a lethal disease of pine and other conifers. Since F. circinatum is a quarantine organism, its timely detection could efficiently prevent its introduction into new areas or facilitate spread management in already infected sites. In this study, we developed a sequence-specific probe loop-mediated isothermal amplification (LAMP) assay for F. circinatum using a field-deployable portable instrument. The assay was able to recognize the pathogen in host tissues in just 30 min, and the sensitivity of the assay made it possible to detect even small amounts of F. circinatum DNA (as low as 0.5 pg/µl). The high efficiency of this method suggests its use as a standard diagnostic tool during phytosanitary controls.


Assuntos
Fusarium/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA Fúngico/genética , Doenças das Plantas/microbiologia , Sensibilidade e Especificidade
6.
AMB Express ; 9(1): 50, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31016406

RESUMO

An effective framework for early warning and rapid response is a crucial element to prevent or mitigate the impact of biological invasions of plant pathogens, especially at ports of entry. Molecular detection of pathogens by using PCR-based methods usually requires a well-equipped laboratory. Rapid detection tools that can be applied as point-of-care diagnostics are highly desirable, especially to intercept quarantine plant pathogens such as Xylella fastidiosa, Ceratocystis platani and Phytophthora ramorum, three of the most devastating pathogens of trees and ornamental plants in Europe and North America. To this aim, in this study we developed three different loop mediated isothermal amplification (LAMP) assays able to detect each target pathogen both in DNA extracted from axenic culture and in infected plant tissues. By using the portable instrument Genie® II, the LAMP assay was able to recognize X. fastidiosa, C. platani and P. ramorum DNA within 30 min of isothermal amplification reaction, with high levels of specificity and sensitivity (up to 0.02 pg µL-1 of DNA). These new LAMP-based tools, allowing an on-site rapid detection of pathogens, are especially suited for being used at ports of entry, but they can be also profitably used to monitor and prevent the possible spread of invasive pathogens in natural ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA