Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 399: 130559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460566

RESUMO

Hydrothermal liquefaction (HTL) shows promise for converting wet biomass waste into biofuel, but the resulting high-strength process water (PW) requires treatment. This study explored enhancing energy recovery by anaerobic digestion using semi-batch reactors. Co-digesting manure with HTL-PW from wheat straw-manure co-HTL yielded methane (43-49% of the chemical oxygen demand, COD) at concentrations up to 17.8 gCOD·L-1, whereas HTL-PW from sewage sludge yielded methane (43% of the COD) up to only 12.8 gCOD·L-1 and complete inhibition occurred at 17 gCOD·L-1. Microbial community shifts confirmed inhibition of methanogenic archaea, while hydrolytic-fermentative bacteria were resilient. Differences in chemical composition, particularly higher levels of N-containing heterocyclic compounds in PW of sewage sludge, likely caused the microbial inhibition. The considerable potential of combining HTL with anaerobic digestion for enhanced energy recovery from straw-manure in an agricultural context is demonstrated, yet sewage sludge HTL-PW requires more advanced approaches to deal with methanogenesis inhibitors.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Triticum , Esterco , Anaerobiose , Reatores Biológicos , Metano , Biocombustíveis
2.
Bioresour Technol ; 287: 121422, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31085427

RESUMO

Hydrogen produced from periodic excess of electrical energy may be added to biogas reactors where it is converted to CH4 that can be utilized in the existing energy grid. The major challenge with this technology is gas-to-liquid mass transfer limitation. The microbial conversions in reactors designed for hydrogenotrophic methanogenesis were studied with microsensors for H2, pH, and CO2. The H2 consumption potential was dependent on the CO2 concentration, but could partially recover after CO2 depletion. Reactors with 3-dimensional biofilm carrier material and a large gas headspace allowed for a methanogenic biofilm in direct contact with the gas phase. A high density of Methanoculleus sp. in the biofilm mediated a high rate of CH4 production, and it was calculated that a reactor filled with 75% carrier material could mediate a biogas upgrading from 50 to 95% CH4 within 24 h when an equivalent amount of H2 was added.


Assuntos
Biocombustíveis , Euryarchaeota , Biofilmes , Reatores Biológicos , Dióxido de Carbono , Metano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA