Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652117

RESUMO

Assembly of macromolecular complexes at correct cellular sites is crucial for cell function. Nuclear pore complexes (NPCs) are large cylindrical assemblies with eightfold rotational symmetry, built through hierarchical binding of nucleoporins (Nups) forming distinct subcomplexes. Here, we uncover a role of ubiquitin-associated protein 2-like (UBAP2L) in the assembly and stability of properly organized and functional NPCs at the intact nuclear envelope (NE) in human cells. UBAP2L localizes to the nuclear pores and facilitates the formation of the Y-complex, an essential scaffold component of the NPC, and its localization to the NE. UBAP2L promotes the interaction of the Y-complex with POM121 and Nup153, the critical upstream factors in a well-defined sequential order of Nups assembly onto NE during interphase. Timely localization of the cytoplasmic Nup transport factor fragile X-related protein 1 (FXR1) to the NE and its interaction with the Y-complex are likewise dependent on UBAP2L. Thus, this NPC biogenesis mechanism integrates the cytoplasmic and the nuclear NPC assembly signals and ensures efficient nuclear transport, adaptation to nutrient stress, and cellular proliferative capacity, highlighting the importance of NPC homeostasis at the intact NE.


Assuntos
Proteínas de Transporte , Membrana Nuclear , Poro Nuclear , Humanos , Transporte Ativo do Núcleo Celular , Células HeLa , Homeostase , Glicoproteínas de Membrana , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte/metabolismo
2.
Elife ; 112022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36000978

RESUMO

The nuclear pore complex (NPC) is the central portal for macromolecular exchange between the nucleus and cytoplasm. In all eukaryotes, NPCs assemble into an intact nuclear envelope (NE) during interphase, but the process of NPC biogenesis remains poorly characterized. Furthermore, little is known about how NPC assembly leads to the fusion of the outer and inner NE, and no factors have been identified that could trigger this event. Here, we characterize the transmembrane protein Brl1 as an NPC assembly factor required for NE fusion in budding yeast. Brl1 preferentially associates with NPC assembly intermediates and its depletion halts NPC biogenesis, leading to NE herniations that contain inner and outer ring nucleoporins but lack the cytoplasmic export platform. Furthermore, we identify an essential amphipathic helix in the luminal domain of Brl1 that mediates interactions with lipid bilayers. Mutations in this amphipathic helix lead to NPC assembly defects, and cryo-electron tomography analyses reveal multilayered herniations of the inner nuclear membrane with NPC-like structures at the neck, indicating a failure in NE fusion. Taken together, our results identify a role for Brl1 in NPC assembly and suggest a function of its amphipathic helix in mediating the fusion of the inner and outer nuclear membranes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell Rep ; 35(7): 109129, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010649

RESUMO

Mitochondria are highly dynamic organelles subjected to fission and fusion events. During mitosis, mitochondrial fission ensures equal distribution of mitochondria to daughter cells. If and how this process can actively drive mitotic progression remains largely unknown. Here, we discover a pathway linking mitochondrial fission to mitotic progression in mammalian cells. The mitochondrial fission factor (MFF), the main mitochondrial receptor for the Dynamin-related protein 1 (DRP1), is directly phosphorylated by Protein Kinase D (PKD) specifically during mitosis. PKD-dependent MFF phosphorylation is required and sufficient for mitochondrial fission in mitotic but not in interphasic cells. Phosphorylation of MFF is crucial for chromosome segregation and promotes cell survival by inhibiting adaptation of the mitotic checkpoint. Thus, PKD/MFF-dependent mitochondrial fission is critical for the maintenance of genome integrity during cell division.


Assuntos
Proteínas Mitocondriais/genética , Mitose/fisiologia , Proteína Quinase C/metabolismo , Animais , Humanos , Camundongos , Transdução de Sinais
4.
Front Cell Dev Biol ; 9: 755847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977012

RESUMO

Nuclear pore complexes (NPCs) are embedded in the nuclear envelope (NE) where they ensure the transport of macromolecules between the nucleus and the cytoplasm. NPCs are built from nucleoporins (Nups) through a sequential assembly order taking place at two different stages during the cell cycle of mammalian cells: at the end of mitosis and during interphase. In addition, fragile X-related proteins (FXRPs) can interact with several cytoplasmic Nups and facilitate their localization to the NE during interphase likely through a microtubule-dependent mechanism. In the absence of FXRPs or microtubule-based transport, Nups aberrantly localize to the cytoplasm forming the so-called cytoplasmic nucleoporin granules (CNGs), compromising NPCs' function on protein export. However, it remains unknown if Nup synthesis or degradation mechanisms are linked to the FXRP-Nup pathway and if and how the action of FXRPs on Nups is coordinated with the cell cycle progression. Here, we show that Nup localization defects observed in the absence of FXR1 are independent of active protein translation. CNGs are cleared in an autophagy- and proteasome-independent manner, and their presence is restricted to the early G1 phase of the cell cycle. Our results thus suggest that a pool of cytoplasmic Nups exists that contributes to the NPC assembly specifically during early G1 to ensure NPC homeostasis at a short transition from mitosis to the onset of interphase.

5.
FASEB J ; 34(9): 12751-12767, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738097

RESUMO

Equal segregation of chromosomes during mitosis ensures euploidy of daughter cells. Defects in this process may result in an imbalance in the chromosomal composition and cellular transformation. Proteolytic and non-proteolytic ubiquitylation pathways ensure directionality and fidelity of mitotic progression but specific mitotic functions of deubiquitylating enzymes (DUBs) remain less studied. Here we describe the role of the DUB ubiquitin carboxyl-terminal hydrolase isozyme L3 (UCHL3) in the regulation of chromosome bi-orientation and segregation during mitosis. Downregulation or inhibition of UCHL3 leads to chromosome alignment defects during metaphase. Frequent segregation errors during anaphase are also observed upon inactivation of UCHL3. Mechanistically, UCHL3 interacts with and deubiquitylates Aurora B, the catalytic subunit of chromosome passenger complex (CPC), known to be critically involved in the regulation of chromosome alignment and segregation. UCHL3 does not regulate protein levels of Aurora B or the binding of Aurora B to other CPC subunits. Instead, UCHL3 promotes localization of Aurora B to kinetochores, suggesting its role in the error correction mechanism monitoring bi-orientation of chromosomes during metaphase. Thus, UCHL3 contributes to the regulation of faithful genome segregation and maintenance of euploidy in human cells.


Assuntos
Segregação de Cromossomos , Mitose , Ubiquitina Tiolesterase/fisiologia , Aurora Quinase B/fisiologia , Células HeLa , Humanos , Ubiquitinação
6.
EMBO J ; 39(20): e104467, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32706158

RESUMO

Nucleoporins (Nups) build highly organized nuclear pore complexes (NPCs) at the nuclear envelope (NE). Several Nups assemble into a sieve-like hydrogel within the central channel of the NPCs. In the cytoplasm, the soluble Nups exist, but how their assembly is restricted to the NE is currently unknown. Here, we show that fragile X-related protein 1 (FXR1) can interact with several Nups and facilitate their localization to the NE during interphase through a microtubule-dependent mechanism. Downregulation of FXR1 or closely related orthologs FXR2 and fragile X mental retardation protein (FMRP) leads to the accumulation of cytoplasmic Nup condensates. Likewise, models of fragile X syndrome (FXS), characterized by a loss of FMRP, accumulate Nup granules. The Nup granule-containing cells show defects in protein export, nuclear morphology and cell cycle progression. Our results reveal an unexpected role for the FXR protein family in the spatial regulation of nucleoporin condensation.


Assuntos
Núcleo Celular/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Acrilatos/farmacologia , Animais , Linhagem Celular , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Regulação para Baixo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Hibridização in Situ Fluorescente , Interfase/genética , Camundongos , Microscopia Eletrônica de Transmissão , Microtúbulos/efeitos dos fármacos , Microtúbulos/ultraestrutura , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA