Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Innate Immun ; 29(5): 61-70, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37306239

RESUMO

Vaping is an increasing health threat in the US and worldwide. The damaging impact of vaping on the human distal lung has been highlighted by the recent epidemic of electronic cigarette or vaping use-associated lung injury (EVALI). The pathogenesis of EVALI remains incompletely understood, due to a paucity of models that recapitulate the structural and functional complexity of the human distal lung and the still poorly defined culprit exposures to vaping products and respiratory viral infections. Our aim was to establish the feasibility of using single cell RNA-sequencing (scRNA-seq) technology in human precision-cut lung slices (PCLS) as a more physiologically relevant model to better understand how vaping regulates the antiviral and pro-inflammatory response to influenza A virus infection. Normal healthy donor PCLS were treated with vaping extract and influenza A viruses for scRNA-seq analysis. Vaping extract augmented host antiviral and pro-inflammatory responses in structural cells such as lung epithelial cells and fibroblasts, as well as in immune cells such as macrophages and monocytes. Our findings suggest that human distal lung slice model is useful to study the heterogeneous responses of immune and structural cells under EVALI conditions, such as vaping and respiratory viral infection.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Viroses , Humanos , Vaping/efeitos adversos , Pulmão , Antivirais , RNA
2.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901724

RESUMO

The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-ß and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vírus da Influenza A , Influenza Humana , Adolescente , Humanos , Adulto Jovem , Anticorpos Neutralizantes/metabolismo , Vírus da Influenza A/fisiologia , Pulmão/patologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Life Sci ; 318: 121480, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36775116

RESUMO

AIMS: An elevated level of galectin-3, a carbohydrate-binding lectin implicated in tumorigenesis, metastasis, and epithelial-mesenchymal transition (EMT), has been found in cigarette smokers. However, the regulation of its expression and role in the pathogenesis of CS-induced EMT and lung cancer metastasis is unclear. Here, we have investigated the mechanism of CS-induced and galectin-3-mediated EMT in airway epithelial cells (AECs). MAIN METHODS: A549 adenocarcinoma cells and primary small airway epithelial cells cultured on an air-liquid interface (ALI) were exposed to cigarette smoke extract (CSE), and MTT, trypan blue, migration, invasion, tumor spheroid and colony formation assays were performed to assess EMT phenotype. Immunoblotting was performed to assess EMT and stemness markers and other regulatory proteins. KEY FINDINGS: CSE exposure affected cell survival and morphology, migration, invasion, and clonogenicity of AECs, which were concomitant with an increase in the expression of EMT markers, galectin-3, and runt-related transcription factor-2 (RUNX-2), an osteogenic transcription factor and upstream regulator of galectin-3. Chemical inhibition or silencing of RUNX-2 downregulated galectin-3 and modulated EMT marker expression, migration, invasion, and clonogenicity in CSE-exposed AECs. Recombinant human galectin-3 also induced EMT and stemness-associated changes in the AECs, and GB1107, a galectin-3 inhibitor, ameliorated these changes. Further, CSE-induced intracellular ROS enabled an increase in RUNX-2 and galectin-3 expression, which were reversed by n-acetyl-cysteine. SIGNIFICANCE: These results provide a novel mechanistic insight into CSE-induced EMT via RUNX-2/galectin-3 axis mediated through ROS, which promoted EMT-associated changes, including invasion, migration, and stemness in AECs, which could be implicated in CS-induced lung cancer progression.


Assuntos
Adenocarcinoma de Pulmão , Fumar Cigarros , Neoplasias Pulmonares , Humanos , Transição Epitelial-Mesenquimal , Galectina 3 , Espécies Reativas de Oxigênio , Neoplasias Pulmonares/patologia , Fatores de Transcrição
4.
Biomolecules ; 12(10)2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36291672

RESUMO

Tobacco smoking has been established to contribute to the pathogenesis of various respiratory diseases including chronic obstructive pulmonary disease (COPD), lung cancer, and asthma. However, major hurdles in mechanistic studies on the role of smoking in human lungs remain in part due to the lack of ex vivo experimental models and ambiguous data from animal models that can best recapitulate the architecture and pathophysiology of the human lung. Recent development of the lung organoid culture system has opened new avenues for respiratory disease research as organoids are proving to be a sophisticated ex vivo model that functionally and structurally mimics the human lungs better than other traditionally used models. This review will discuss how recent advances in lung organoid systems may help us better determine the injurious and immunological effect of smoking on human lungs and will provide some suggestions for future research directions.


Assuntos
Organoides , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Organoides/fisiologia , Fumar/efeitos adversos , Pulmão , Fumar Tabaco
5.
Methods Mol Biol ; 2413: 121-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35044660

RESUMO

Smoking tobacco is a major risk factor for the development of lung cancer, COPD, and other lung pathologies in smokers. Cigarette smoke (CS), which is comprised of several toxic components, is known to cause oxidative stress and inflammation-induced lung damage. Since airway epithelial cells act as the primary barrier, they protect the lung tissues from environmental insults, including CS. Upon exposure to these insults, airway epithelial cells act as the initial site of injury and orchestrate the pathophysiology of lung cancer. Scientists have been using cigarette smoke extract (CSE) in the preclinical model of in vitro cell culture to understand the effect of CS on the cellular, biochemical, and molecular changes in the lung epithelial cells. However, the standard procedure to prepare the CSE in the laboratory with a low-cost assembly and obtaining a reproducible quality of CSE in different batches is a challenge. Here, in this chapter, we delineate the method for the preparation of CSE using a discontinuous puff-based system which is an economical and reproducible method to prepare CSE in the laboratory. This method is suitable for studying CSE-induced molecular changes in lung diseases, including lung cancer, using in vitro models of lung adenocarcinoma cells.


Assuntos
Fumar Cigarros , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Células Epiteliais/patologia , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Nicotiana/efeitos adversos , Nicotiana/química
6.
Methods Mol Biol ; 2413: 133-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35044661

RESUMO

Airway epithelial cells arrayed in the inner lining of the airways of the lung are believed to be the major source for the development of malignancy of the lung. The advent of in vitro cell culture model made it easy to understand the molecular mechanism of carcinogenesis at a cellular level, where the airway epithelial cells are cultured on a 2D surface submerged in the culture media. However, this method of culturing airway epithelial cells does not reflect their true nature, and thus results obtained have their limitations. Further, they exhibit dissimilar morphology, transcriptome, and secretome when compared to the cells in vivo. Thus, the experimental data obtained from 2D culture models are inconclusive and, in most cases, could not be validated further in in vivo settings. These limitations can be addressed by culturing the airway epithelial cells on air-liquid interface (ALI), where they develop ciliated morphology similar to that of the lung. Experiments performed with this 3D model provide reliable data that are more realistic, and, in many cases, could replace the requirement of further in vivo validation. Here, we provide the detailed protocol of a 3D culture system called ALI culture for growing human-derived primary small airway epithelial cells to study the cellular and molecular changes associated with lung cancer.


Assuntos
Células Epiteliais , Neoplasias Pulmonares , Técnicas de Cultura de Células/métodos , Células Cultivadas , Humanos , Pulmão , Neoplasias Pulmonares/patologia
7.
Chem Biol Interact ; 351: 109771, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34864006

RESUMO

Cigarette smoke exposure leads to upregulation of cyclooxygenase-2 (COX-2), an inducible enzyme that synthesizes prostaglandin E2 (PGE2) and promotes airway inflammation. COX-2 overexpression is frequently implicated in inflammation, invasion, metastasis, and epithelial-mesenchymal transition (EMT). However, its detailed molecular mechanism in cigarette smoke induced EMT is not clear. Further, fisetin, a bioflavonoid, exhibits antioxidant and anti-inflammatory properties, but its effect in modulating COX-2-mediated inflammation and downstream sequelae remains unexplored. Therefore, we have investigated the mechanism of cigarette smoke-induced COX-2-mediated EMT in airway epithelial cells and examined the role of fisetin in controlling this aberration. MTT, trypan blue staining, gelatin zymography, Western blotting, invasion, wound healing, and tumor sphere formation assays in cigarette smoke extract (CSE) and/or fisetin treated airway epithelial cells, and in-silico molecular docking studies were performed. Results revealed that CSE exposure increased the expression and activity of COX-2, MMP-2/9, and ß-catenin and also enhanced expression of EMT markers leading to higher migration and invasion potential of airway epithelial cells. A specific COX-2 inhibitor NS-398 as well as fisetin treatment reversed the expression of EMT biomarkers, reduced the activity of MMP-2/9, and blocked the migration and invasion potential induced by CSE. Further, PGE2 also increased MMPs activity, invasion, and migration potential similar to CSE, which were significantly reversed by fisetin. In-silico studies showed a high binding affinity of fisetin to key EMT associated proteins, validating its anti-EMT potential. Thus, our study firstly unearths the mechanism of CSE-induced EMT in airway epithelial cells via COX-2/MMP/ß-catenin pathway, and secondly, it reveals that fisetin could significantly reverse CSE-induced EMT by inhibiting COX-2, indicating that fisetin could be an effective drug candidate for cigarette smoke-induced lung dysfunction.


Assuntos
Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Células A549 , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Flavonóis/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Nitrobenzenos/farmacologia , Ligação Proteica , Sulfonamidas/farmacologia , Nicotiana/química , beta Catenina/metabolismo
8.
Chem Phys Lipids ; 233: 104978, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32991905

RESUMO

Lung cancer is one of the most common malignant tumors and emerged as one of the leading causes of cancer-related death worldwide. Surgical resection can be a curative treatment for early stage but the most of lung cancer patients are diagnosed at an advanced stage when the pulmonary tumor has been invaded beyond the respiratory system. Therefore, chemotherapy is suitable for curing metastasized tumor. Baicalin (BL) is a flavonoid which has been studied in the treatment of several types of cancer including lung cancer. However, its low solubility in water and non-specificity impede its practical utilization. Hence, we have reported a stearic acid and pluronic F68 conjugated nanomicelles (PF68-SA) system to improve therapeutic efficacy of BL. Solvent evaporation method was used to prepare the BL-loaded PF68-SA nanomicelles (BLNM). The designed BLNM were characterized for the particle size, surface charge, critical micelle concentration, colloidal stability, morphology, and total drug content. BLNM formulation showed improved toxicity of BL against A549 human lung cancer cells in cytotoxicity assay. Further, apoptosis study also depicted BLNM-induced cell death in A549 cells. Therefore, the synthesized fatty acid-modified polymeric nanomicellar system could be useful in overcoming the stability and low therapeutic efficacy issues of hydrophobic anticancer drugs like BL and delivering them to the cancer cells.


Assuntos
Antineoplásicos/farmacologia , Flavonoides/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/química , Poloxâmero/química , Ácidos Esteáricos/química , Células A549 , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides/química , Humanos , Neoplasias Pulmonares/patologia , Micelas , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
9.
Int J Pharm ; 588: 119795, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32853712

RESUMO

Carvacrol (CV), a monoterpene possesses wide range of biological activities but has limited application due to low aqueous solubility and poor bioavailability. To address this issue and enhance bioavailability and efficacy of carvacrol, lecithin stabilized zein nanoparticles were investigated. Precipitation method was used for synthesis of nanoparticles and characterized using various techniques. CV entrapped under optimized parameters has size around 250 nm with -15 mV zeta potential. SEM studies showed nanoparticles with spherical morphology and size in accordance with DLS studies. FTIR, NMR and DSC were used to determine the molecular interaction between CV and lecithin stabilized zein nanoparticles. Molecular docking studies were performed to understand the interaction between protein and drug at molecular level. Our results demonstrated the presence of two active sites within zein, showing strong binding interactions with carvacrol. The encapsulation efficiency of 78% with loading efficiency of 13% was obtained as per HPLC and UV-Vis studies. Cytotoxicity assay indicated that the CV loaded nanoparticles induce cytotoxicity against colon cancer (SW480) cells further confirmed by acridine orange and ethidium bromide dual staining assay. Fluorescent tagged nanoparticles revealed significant cellular uptake of drug. Our results suggest that CV can be conveniently delivered via oral route after incorporating into lecithin stabilized zein nanoparticles and may prove effective for colon cancer treatment.


Assuntos
Nanopartículas , Zeína , Cimenos , Portadores de Fármacos , Simulação de Acoplamento Molecular , Tamanho da Partícula
10.
Drug Dev Ind Pharm ; 46(7): 1123-1132, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32469607

RESUMO

In the past decade, naturally occurring phytoconstituents have emerged as potential therapeutic agents and alternative to synthetic drugs. However, efficient delivery of hydrophobic phytoconstituents into the body with desired therapeutic efficacy is a key challenge for the pharmaceutical industries due to their insolubility in water and low oral bioavailability. Nanosuspension formulations have shown promises to improve the delivery of the hydrophobic molecules with simultaneously avoiding the drawbacks like carrier toxicity and scale-up issues of other nanotechnology-based drug delivery systems. In this study, we have used morin hydrate (MH), a flavonol, and developed MH nanosuspension formulation (MHNS) to improve its poor physiochemical properties and low oral bioavailability. Different stabilizers with varying concentrations were investigated for preparing nanosuspension. MHNS was characterized by DLS, TEM, FTIR, DSC, powder XRD and was evaluated for its solubility, dissolution, partition coefficient, in-vitro anticancer activity and pharmacokinetics in rats. The optimized nanosuspension formulation, with a size of <100 nm, is capable of increasing aqueous solubility, dissolution rate, and oral bioavailability of MH. Moreover, the therapeutic efficacy, in terms of cytotoxicity to human lung cancer cells, of MH was also increased after formulating into nanosuspension form.


Assuntos
Flavonoides , Nanopartículas , Administração Oral , Animais , Disponibilidade Biológica , Ratos , Solubilidade , Suspensões
11.
Mater Sci Eng C Mater Biol Appl ; 111: 110792, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32279785

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) were optimally synthesized employing two energy sources viz. thermal and microwave using low temperature co-precipitation process. Both methods yielded particles with optimum physicochemical properties for biomedical applications like smaller size (~6--7 nm), narrow size distribution (standard deviation ~1.6-1.7 nm) and good magnetic parameters (saturation magnetisation ~53 emu/g at 9 T). Simplified process made use of domestic oven. After coating by amino acid serine, successful loading (>8 wt%) of drug Doxorubicin was achieved for both SPIONs. Microwave sample showed equivalently efficient drug loading despite half the serine coating. Findings were confirmed by various techniques like X-ray diffraction (XRD), transmission electron microscopy (TEM), Vibrating sample magnetometer (VSM) and thermo gravimetric analysis (TGA) etc. Differences in thermal homogeneities and efficiency of heat transfer between two energy modes affected the properties of synthesized SPIONs. Differences were observed in amount of serine coating, drug release behaviour and in vitro experiments on A549 cells like internalisation and cell viability data. About 59 and 39% pH and time dependent drug release at pH 5 was obtained for thermal and microwave sample respectively. In vitro experiments confirmed the successful internalisation and cell death, supporting the suitability of SPIONS as efficient targeted drug carriers. Despite lesser drug release, microwave sample showed comparable in vitro results. Study emphasizes the role and importance of energy in affecting the efficiency and functional behaviour of SPIONs as nano drug carriers. Being biocompatible and magnetic these particles can be applied successfully as efficient targeted drug delivery agents.


Assuntos
Dextranos/química , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Micro-Ondas , Temperatura , Células A549 , Morte Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Difusão Dinâmica da Luz , Endocitose/efeitos dos fármacos , Humanos , Hidrodinâmica , Nanopartículas de Magnetita/ultraestrutura , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termogravimetria , Difração de Raios X
12.
Chem Biol Interact ; 314: 108846, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606474

RESUMO

Matrix metalloproteinases (MMPs) have been implicated in EMT but their role in the regulation of cigarette smoke-induced EMT in airway epithelium is not clear. We have therefore investigated the potential role of MMP-2 and -9 in cigarette smoke extract (CSE) induced EMT using A549 lung epithelial cells and human small airway epithelial cells (SAEC). The cells were treated with different concentration of CSE, and MTT and trypan blue assays, acridine orange-ethidium bromide assay, gelatin zymography, Western blotting, immunofluorescence studies, Boyden-chamber assay, wound healing assay and air-liquid interface (ALI) culture were used to assess different cellular and molecular changes associated with EMT. The results depict that CSE increased the cytotoxicity along with a concurrent increase in the expression and activity of MMP-2 and -9. CSE further altered EMT markers like E-cadherin, N-cadherin, vimentin, and the molecular modulators of EMT such as ß-catenin and pGSK-3ß. Further, CSE also upregulated EGFR, AKT, and ERK1/2 in airway epithelial cells. SB-3CT, a known inhibitor of MMP-2 and -9, altered and reversed the expression of markers of EMT and kinases, validating the role of MMP-2 and -9 in CSE-induced EMT. Fisetin, a plant-derived bioflavonoid, also reversed the expression of EMT markers and molecular regulators in a similar fashion as SB-3CT. In summary, this study highlights the role of MMP-2 and -9 in CSE-induced EMT and curate its molecular cascade through EGFR/AKT/ERK/ß-catenin axis, which could be restored by MMP-2 and -9 inhibitor and fisetin. Fisetin is hitherto unknown to modulate CSE-induced MMPs activity in airway epithelial cells, and our study suggests its potential role as a therapeutic approach in CSE-induced EMT in lung epithelial cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonoides/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Nicotiana/química , Transdução de Sinais/efeitos dos fármacos , Fumaça/efeitos adversos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Flavonóis , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo
13.
Colloids Surf B Biointerfaces ; 175: 202-211, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530006

RESUMO

Morin hydrate (MH) is a naturally occurring polyphenolic flavonol compound. It has been recently investigated for its many biological activities such as anti-inflammatory, anticancer, antioxidant, antiarthritic, antifertility, antiplasmodic and anticancer. Though these outcomes are very promising, its low aqueous solubility and oral bioavailability restrict its clinical uses. Therefore, in this study we report pluronic F68 and stearic acid conjugated (F68-SA) nanomicelles for increasing oral bioavailability of MH. The MH loaded F68-SA nanomicelles (MHNM) were prepared by the solvent evaporation method. The MHNM were extensively characterized for the size, surface charge, stability, morphology, critical micelle concentration, drug content, and in-vitro drug release. The cell viability assay depicted a significant increase in cytotoxicity of MH against A549 human lung cancer cells after incubating as MHNM. Exposure of A549 cells to MHNM induced cell apoptosis in the cells as observed in apoptosis studies. Pharmacokinetic studies in Sprague-Dawley rats revealed that MHNM significantly increased the oral bioavailability of MH as compared to pure drug. Therefore, the novel, surfactant-lipid based micellar system is an effective solubilizing and delivering system for oral administration of poorly water soluble drugs like MH.


Assuntos
Antineoplásicos/administração & dosagem , Ácidos Graxos/química , Flavonoides/administração & dosagem , Micelas , Tensoativos/química , Células A549 , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA