RESUMO
Underwater recording remains a critical challenge in bioelectronics because traditional flexible electrodes can not fulfill essential requirements such as stability and steady conductivity in aquatic environments. Herein, we show the use of elastic gels made of hydrophobic natural eutectic solvents as water-resistant electrodes. These eutectogels are designed with tailorable mechanical properties via one-step photopolymerization of acrylic monomers in different eutectic mixtures composed of fatty acids and menthol. The low viscosity of the eutectics turns the formulations into suitable inks for 3D printing, allowing fast manufacturing of complex objects. Furthermore, the hydrophobic nature of the building blocks endows the eutectogels with excellent stability and low water uptake. The obtained flexible eutectogel electrodes can record real-time electromyography (EMG) signals with low interference in the air and underwater.
RESUMO
3D conductive materials such as polymers and hydrogels that interface between biology and electronics are actively being researched for the fabrication of bioelectronic devices. In this work, short-time (5 s) photopolymerizable conductive inks based on poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) dispersed in an aqueous matrix formed by a vinyl resin, poly(ethylene glycol) diacrylate (PEGDA) with different molecular weights (M n = 250, 575, and 700 Da), ethylene glycol (EG), and a photoinitiator have been optimized. These inks can be processed by Digital Light 3D Printing (DLP) leading to flexible and shape-defined conductive hydrogels and dry conductive PEDOTs, whose printability resolution increases with PEGDA molecular weight. Besides, the printed conductive PEDOT-based hydrogels are able to swell in water, exhibiting soft mechanical properties (Young's modulus of â¼3 MPa) similar to those of skin tissues and good conductivity values (10-2 S cm-1) for biosensing. Finally, the printed conductive hydrogels were tested as bioelectrodes for human electrocardiography (ECG) and electromyography (EMG) recordings, showing a long-term activity, up to 2 weeks, and enhanced detection signals compared to commercial Ag/AgCl medical electrodes for health monitoring.