Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
bioRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38766054

RESUMO

Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.

2.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699360

RESUMO

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.

3.
Nat Med ; 30(6): 1689-1695, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38627562

RESUMO

Reduced insulin sensitivity (insulin resistance) is a hallmark of normal physiology in late pregnancy and also underlies gestational diabetes mellitus (GDM). We conducted transcriptomic profiling of 434 human placentas and identified a positive association between insulin-like growth factor binding protein 1 gene (IGFBP1) expression in the placenta and insulin sensitivity at ~26 weeks gestation. Circulating IGFBP1 protein levels rose over the course of pregnancy and declined postpartum, which, together with high gene expression levels in our placenta samples, suggests a placental or decidual source. Higher circulating IGFBP1 levels were associated with greater insulin sensitivity (lesser insulin resistance) at ~26 weeks gestation in the same cohort and in two additional pregnancy cohorts. In addition, low circulating IGFBP1 levels in early pregnancy predicted subsequent GDM diagnosis in two cohorts of pregnant women. These results implicate IGFBP1 in the glycemic physiology of pregnancy and suggest a role for placental IGFBP1 deficiency in GDM pathogenesis.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina , Placenta , Humanos , Gravidez , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Feminino , Diabetes Gestacional/metabolismo , Diabetes Gestacional/genética , Diabetes Gestacional/sangue , Placenta/metabolismo , Resistência à Insulina/genética , Adulto , Perfilação da Expressão Gênica , Estudos de Coortes
4.
medRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496558

RESUMO

Genes encoding long non-coding RNAs (lncRNAs) comprise a large fraction of the human genome, yet haploinsufficiency of a lncRNA has not been shown to cause a Mendelian disease. CHASERR is a highly conserved human lncRNA adjacent to CHD2-a coding gene in which de novo loss-of-function variants cause developmental and epileptic encephalopathy. Here we report three unrelated individuals each harboring an ultra-rare heterozygous de novo deletion in the CHASERR locus. We report similarities in severe developmental delay, facial dysmorphisms, and cerebral dysmyelination in these individuals, distinguishing them from the phenotypic spectrum of CHD2 haploinsufficiency. We demonstrate reduced CHASERR mRNA expression and corresponding increased CHD2 mRNA and protein in whole blood and patient-derived cell lines-specifically increased expression of the CHD2 allele in cis with the CHASERR deletion, as predicted from a prior mouse model of Chaserr haploinsufficiency. We show for the first time that de novo structural variants facilitated by Alu-mediated non-allelic homologous recombination led to deletion of a non-coding element (the lncRNA CHASERR) to cause a rare syndromic neurodevelopmental disorder. We also demonstrate that CHD2 has bidirectional dosage sensitivity in human disease. This work highlights the need to carefully evaluate other lncRNAs, particularly those upstream of genes associated with Mendelian disorders.

5.
Ann Am Thorac Soc ; 21(6): 884-894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335160

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) and emphysema are associated with endothelial damage and altered pulmonary microvascular perfusion. The molecular mechanisms underlying these changes are poorly understood in patients, in part because of the inaccessibility of the pulmonary vasculature. Peripheral blood mononuclear cells (PBMCs) interact with the pulmonary endothelium. Objectives: To test the association between gene expression in PBMCs and pulmonary microvascular perfusion in COPD. Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study recruited two independent samples of COPD cases and controls with ⩾10 pack-years of smoking history. In both samples, pulmonary microvascular blood flow, pulmonary microvascular blood volume, and mean transit time were assessed on contrast-enhanced magnetic resonance imaging, and PBMC gene expression was assessed by microarray. Additional replication was performed in a third sample with pulmonary microvascular blood volume measures on contrast-enhanced dual-energy computed tomography. Differential expression analyses were adjusted for age, gender, race/ethnicity, educational attainment, height, weight, smoking status, and pack-years of smoking. Results: The 79 participants in the discovery sample had a mean age of 69 ± 6 years, 44% were female, 25% were non-White, 34% were current smokers, and 66% had COPD. There were large PBMC gene expression signatures associated with pulmonary microvascular perfusion traits, with several replicated in the replication sets with magnetic resonance imaging (n = 47) or dual-energy contrast-enhanced computed tomography (n = 157) measures. Many of the identified genes are involved in inflammatory processes, including nuclear factor-κB and chemokine signaling pathways. Conclusions: PBMC gene expression in nuclear factor-κB, inflammatory, and chemokine signaling pathways was associated with pulmonary microvascular perfusion in COPD, potentially offering new targetable candidates for novel therapies.


Assuntos
Leucócitos Mononucleares , Imageamento por Ressonância Magnética , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Masculino , Idoso , Leucócitos Mononucleares/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Pessoa de Meia-Idade , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Aterosclerose/genética , Aterosclerose/etnologia , Estudos de Casos e Controles , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Expressão Gênica , Tomografia Computadorizada por Raios X , Circulação Pulmonar , Fumar , Microcirculação
6.
Cell Genom ; 4(1): 100468, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38190104

RESUMO

Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.


Assuntos
Estudo de Associação Genômica Ampla , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/diagnóstico , Taxa de Filtração Glomerular/genética , Herança Multifatorial/genética , Rim/fisiologia
7.
Am J Hum Genet ; 111(1): 133-149, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181730

RESUMO

Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.


Assuntos
Regulação da Expressão Gênica , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Genótipo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA