Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 24(7): e2300260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38059784

RESUMO

Intrauterine growth restriction (IUGR) is associated with increased risk of cardiometabolic disease later in life and has been shown to affect female and male offspring differently, but the mechanisms remain unclear. The purpose of this study was to identify proteomic differences and metabolic risk markers in IUGR male and female neonates when compared to appropriate for gestational age (AGA) babies that will provide a better understanding of IUGR pathogenesis and its associated risks. Our results revealed alterations in IUGR cord plasma proteomes with most of the differentially abundant proteins implicated in peroxisome pathways. This effect was evident in females but not in males. Furthermore, we observed that catalase activity, a peroxisomal enzyme, was significantly increased in females (p < 0.05) but unchanged in males. Finally, we identified risk proteins associated with obesity, type-2 diabetes, and glucose intolerance such as EGF containing fibulin extracellular matrix protein 1 (EFEMP1), proprotein convertase subtilisin/kexin type 9 (PCSK9) and transforming growth factor beta receptor 3 (TGFBR3) proteins unique to females while coagulation factor IX (C9) and retinol binding protein 4 (RBP4) are unique in males. In conclusion, IUGR may display sexual dimorphism which may be associated with differences in lifelong risk for cardiometabolic disease between males and females.


Assuntos
Doenças Cardiovasculares , Retardo do Crescimento Fetal , Recém-Nascido , Lactente , Humanos , Masculino , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Pró-Proteína Convertase 9/metabolismo , Proteômica , Proteínas Plasmáticas de Ligação ao Retinol , Proteínas da Matriz Extracelular/metabolismo
2.
Semin Arthritis Rheum ; 63: 152263, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802003

RESUMO

BACKGROUND: Intrarenal complement activation has been implicated in the pathogenesis of tubulointerstitial fibrosis in lupus nephritis (LN) based on prior animal studies. The assembly of the membrane attack complex (MAC) by complement C5b to C9 on the cell membrane leads to cytotoxic pores and cell lysis, while CD59 inhibits MAC formation by preventing C9 from joining the complex. We hypothesize that complement activation and imbalance between complement activation and inhibition, as defined by increased production of individual complement components and uncontrolled MAC activation relative to CD59 inhibition, are associated with interstitial fibrosis and tubular atrophy (IFTA) in LN and correlate with the key mediators of kidney fibrosis- transforming growth factor receptors beta (TGFRß), platelet-derived growth factor beta (PDGFß) and platelet-derived growth factor receptor beta (PDGFRß). METHODS: We included urine samples from 46 adults and pediatric biopsy-proven lupus nephritis patients who underwent clinically indicated kidney biopsies between 2010 and 2019. We compared individual urinary complement components and the urinary C9-to-CD59 ratio between LN patients with moderate/severe IFTA and none/mild IFTA. IFTA was defined as none/mild (<25% of interstitium affected) versus moderate/severe (≥ 25% of interstitium affected). Proteomics analysis was performed using mass spectrometry (Orbitrap Fusion Lumos, Thermo Scientific) and processed by the Proteome Discoverer. Urinary complement proteins enriched in LN patients with moderate/severe IFTA were correlated with serum creatinine, TGFßR1, TGFßR2, PDGFß, and PDGFRß. RESULTS: Of the 46 LN patients included in the study, 41 (89.1%) were women, 20 (43.5%) self-identified as Hispanic or Latino, and 26 (56.5%) self-identified as Black or African American. Ten of the 46 (21.7%) LN patients had moderate/severe IFTA on kidney biopsy. LN patients with moderate/severe IFTA had an increased urinary C9-to-CD59 ratio [median 0.91 (0.83-1.05) vs 0.81 (0.76-0.91), p=0.01]. Urinary C3 and CFI levels in LN patients with moderate/severe IFTA were higher compared to those with none/mild IFTA [C3 median (IQR) 24.4(23.5-25.5) vs. 20.2 (18.5-22.2), p= 0.02], [CFI medium (IQR) 28.8 (21.8-30.6) vs. 20.4 (18.5-22.9), p=0.01]. Complement C9, CD59, C3 and CFI correlated with TGFßR1, PDGFß, and PDGFRß, while C9, CD59 and C3 correlated with TGFßR2. CONCLUSION: This study is one of the first to compare the urinary complement profile in LN patients with moderate/severe IFTA and none/mild IFTA in human tissues. This study identified C3, CFI, and C9-to-CD59 ratio as potential markers of tubulointerstitial fibrosis in LN.


Assuntos
Nefrite Lúpica , Adulto , Animais , Humanos , Feminino , Criança , Masculino , Nefrite Lúpica/patologia , Proteômica , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Ativação do Complemento , Fibrose , Atrofia
3.
iScience ; 26(9): 107648, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37670782

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) is associated with protection against neonatal herpes. We hypothesized that placental transfer of ADCC-mediating herpes simplex virus (HSV) immunoglobulin G (IgG) is influenced by antigenic target, function, glycans, gestational age, and maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Maternal and cord blood were collected from HSV-seropositive (HSV+) mothers pre-COVID and HSV+/SARS-CoV-2+ mothers during the pandemic. Transfer of HSV neutralizing IgG was significantly lower in preterm versus term dyads (transfer ratio [TR] 0.84 vs. 2.44) whereas the TR of ADCC-mediating IgG was <1.0 in both term and preterm pre-COVID dyads. Anti-glycoprotein D IgG, which had only neutralizing activity, and anti-glycoprotein B (gB) IgG, which displayed neutralizing and ADCC activity, exhibited different relative affinities for the neonatal Fc receptor (FcRn) and expressed different glycans. The transfer of ADCC-mediating IgG increased significantly in term SARS-CoV-2+ dyads. This was associated with greater placental colocalization of FcRn with FcγRIIIa. These findings have implications for strategies to prevent neonatal herpes.

4.
Nat Immunol ; 24(10): 1698-1710, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592014

RESUMO

In development, pioneer transcription factors access silent chromatin to reveal lineage-specific gene programs. The structured DNA-binding domains of pioneer factors have been well characterized, but whether and how intrinsically disordered regions affect chromatin and control cell fate is unclear. Here, we report that deletion of an intrinsically disordered region of the pioneer factor TCF-1 (termed L1) leads to an early developmental block in T cells. The few T cells that develop from progenitors expressing TCF-1 lacking L1 exhibit lineage infidelity distinct from the lineage diversion of TCF-1-deficient cells. Mechanistically, L1 is required for activation of T cell genes and repression of GATA2-driven genes, normally reserved to the mast cell and dendritic cell lineages. Underlying this lineage diversion, L1 mediates binding of TCF-1 to its earliest target genes, which are subject to repression as T cells develop. These data suggest that the intrinsically disordered N terminus of TCF-1 maintains T cell lineage fidelity.


Assuntos
Linfócitos T , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linfócitos T/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Cromatina/metabolismo
5.
bioRxiv ; 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461463

RESUMO

Background: Jansen de Vries Syndrome (JdVS) is a rare neurodevelopmental disorder (NDD) caused by gain-of-function (GOF) truncating mutations in PPM1D exons 5 or 6. PPM1D is a serine/threonine phosphatase that plays an important role in the DNA damage response (DDR) by negatively regulating TP53 (P53). JdVS-associated mutations lead to the formation of a truncated PPM1D protein that retains catalytic activity and has a GOF effect because of reduced degradation. Somatic PPM1D exons 5 and 6 truncating mutations are well-established factors in a number of cancers, due to excessive dephosphorylation and reduced function of P53 and other substrates involved in DDR. Children with JdVS have a variety of neurodevelopmental, psychiatric, and physical problems. In addition, a small fraction has acute neuropsychiatric decompensation apparently triggered by infection or severe non-infectious environmental stress factors. Methods: To understand the molecular basis of JdVS, we developed an induced pluripotent stem cell (iPSC) model system. iPSCs heterozygous for the truncating variant (PPM1D+/tr), were made from a patient, and control lines engineered using CRISPR-Cas9 gene editing. Proteomics and phosphoprotemics analyses were carried out on iPSC-derived glutamatergic neurons and microglia from three control and three PPM1D+/tr iPSC lines. We also analyzed the effect of the TLR4 agonist, lipopolysaccharide, to understand how activation of the innate immune system in microglia could account for acute behavioral decompensation. Results: One of the major findings was the downregulation of POGZ in unstimulated microglia. Since loss-of-function variants in the POGZ gene are well-known causes of autism spectrum disorder, the decrease in PPM1D+/tr microglia suggests this plays a role in the neurodevelopmental aspects of JdVS. In addition, neurons, baseline, and LPS-stimulated microglia show marked alterations in the expression of several E3 ubiquitin ligases, most notably UBR4, and regulators of innate immunity, chromatin structure, ErbB signaling, and splicing. In addition, pathway analysis points to overlap with neurodegenerative disorders. Limitations: Owing to the cost and labor-intensive nature of iPSC research, the sample size was small. Conclusions: Our findings provide insight into the molecular basis of JdVS and can be extrapolated to understand neuropsychiatric decompensation that occurs in subgroups of patients with ASD and other NDDs.

6.
Glia ; 71(11): 2664-2678, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37519044

RESUMO

Mutations leading to colony-stimulating factor-1 receptor (CSF-1R) loss-of-function or haploinsufficiency cause CSF1R-related leukoencephalopathy (CRL), an adult-onset disease characterized by loss of myelin and neurodegeneration, for which there is no effective therapy. Symptom onset usually occurs in the fourth decade of life and the penetrance of disease in carriers is high. However, familial studies have identified a few carriers of pathogenic CSF1R mutations that remain asymptomatic even in their seventh decade of life, raising the possibility that the development and severity of disease might be influenced by environmental factors. Here we report new cases in which long-term glucocorticoid treatment is associated with asymptomatic status in elder carriers of pathogenic CSF-1R mutations. The main objective of the present study was to investigate the link between chronic immunosuppression initiated pre-symptomatically and resistance to the development of symptomatic CRL, in the Csf1r+/- mouse model. We show that chronic prednisone administration prevents the development of memory, motor coordination and social interaction deficits, as well as the demyelination, neurodegeneration and microgliosis associated with these deficits. These findings are in agreement with the preliminary clinical observations and support the concept that pre-symptomatic immunosuppression is protective in patients carrying pathogenic CSF1R variants associated with CRL. Proteomic analysis of microglia and oligodendrocytes indicates that prednisone suppresses processes involved in microglial activation and alleviates senescence and improves fitness of oligodendrocytes. This analysis also identifies new potential targets for therapeutic intervention.


Assuntos
Leucoencefalopatias , Receptor de Fator Estimulador de Colônias de Macrófagos , Camundongos , Animais , Prednisona/farmacologia , Proteômica , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Leucoencefalopatias/genética , Leucoencefalopatias/prevenção & controle , Microglia , Receptores Proteína Tirosina Quinases , Terapia de Imunossupressão
7.
Nat Cell Biol ; 25(7): 989-1003, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37386153

RESUMO

Fasting triggers diverse physiological adaptations including increases in circulating fatty acids and mitochondrial respiration to facilitate organismal survival. The mechanisms driving mitochondrial adaptations and respiratory sufficiency during fasting remain incompletely understood. Here we show that fasting or lipid availability stimulates mTORC2 activity. Activation of mTORC2 and phosphorylation of its downstream target NDRG1 at serine 336 sustains mitochondrial fission and respiratory sufficiency. Time-lapse imaging shows that NDRG1, but not the phosphorylation-deficient NDRG1Ser336Ala mutant, engages with mitochondria to facilitate fission in control cells, as well as in those lacking DRP1. Using proteomics, a small interfering RNA screen, and epistasis experiments, we show that mTORC2-phosphorylated NDRG1 cooperates with small GTPase CDC42 and effectors and regulators of CDC42 to orchestrate fission. Accordingly, RictorKO, NDRG1Ser336Ala mutants and Cdc42-deficient cells each display mitochondrial phenotypes reminiscent of fission failure. During nutrient surplus, mTOR complexes perform anabolic functions; however, paradoxical reactivation of mTORC2 during fasting unexpectedly drives mitochondrial fission and respiration.


Assuntos
Dinâmica Mitocondrial , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte/metabolismo , Fosforilação , Jejum
8.
Epigenetics Chromatin ; 15(1): 35, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411440

RESUMO

BACKGROUND: Three-dimensional (3D) cell culture has emerged as an alternative approach to 2D flat culture to model more accurately the phenotype of solid tissue in laboratories. Culturing cells in 3D more precisely recapitulates physiological conditions of tissues, as these cells reduce activities related to proliferation, focusing their energy consumption toward metabolism and homeostasis. RESULTS: Here, we demonstrate that 3D liver spheroids are a suitable system to model chromatin dynamics and response to epigenetics inhibitors. To delay necrotic tissue formation despite proliferation arrest, we utilize rotating bioreactors that apply active media diffusion and low shearing forces. We demonstrate that the proteome and the metabolome of our model resemble typical liver functions. We prove that spheroids respond to sodium butyrate (NaBut) treatment, an inhibitor of histone deacetylases (HDACi), by upregulating histone acetylation and transcriptional activation. As expected, NaBut treatment impaired specific cellular functions, including the energy metabolism. More importantly, we demonstrate that spheroids reestablish their original proteome and transcriptome, including pre-treatment levels of histone acetylation, metabolism, and protein expression once the standard culture condition is restored after treatment. Given the slow replication rate (> 40 days) of cells in 3D spheroids, our model enables to monitor the recovery of approximately the same cells that underwent treatment, demonstrating that NaBut does not have long-lasting effects on histone acetylation and gene expression. These results suggest that our model system can be used to quantify molecular memory on chromatin. CONCLUSION: Together, we established an innovative cell culture system that can be used to model anomalously decondensing chromatin in physiological cell growth and rule out epigenetics inheritance if cells recover the original phenotype after treatment. The transient epigenetics effects demonstrated here highlight the relevance of using a 3D culture model system that could be very useful in studies requiring long-term drug treatment conditions that would not be possible using a 2D cell monolayer system.


Assuntos
Histonas , Proteoma , Acetilação , Fígado , Processamento de Proteína Pós-Traducional , Cromatina
9.
J Vis Exp ; (183)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604167

RESUMO

Flat cultures of mammalian cells are a widely used in vitro approach for understanding cell physiology, but this system is limited in modeling solid tissues due to unnaturally rapid cell replication. This is particularly challenging when modeling mature chromatin, as fast replicating cells are frequently involved in DNA replication and have a heterogeneous polyploid population. Presented below is a workflow for modeling, treating, and analyzing quiescent chromatin modifications using a three-dimensional (3D) cell culture system. Using this protocol, hepatocellular carcinoma cell lines are grown as reproducible 3D spheroids in an incubator providing active nutrient diffusion and low shearing forces. Treatment with sodium butyrate and sodium succinate induced an increase in histone acetylation and succinylation, respectively. Increases in levels of histone acetylation and succinylation are associated with a more open chromatin state. Spheroids are then collected for isolation of cell nuclei, from which histone proteins are extracted for the analysis of their post-translational modifications. Histone analysis is performed via liquid chromatography coupled online with tandem mass spectrometry, followed by an in-house computational pipeline. Finally, examples of data representation to investigate the frequency and occurrence of combinatorial histone marks are shown.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Histonas , Fígado , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Técnicas de Cultura de Células em Três Dimensões/métodos , Cromatina/fisiologia , Cromatografia Líquida , Histonas/análise , Histonas/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Esferoides Celulares/metabolismo
10.
Sci Rep ; 12(1): 6934, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484384

RESUMO

The immune system has been described to play a role in the development of Alzheimer's disease (AD), but the distribution of immunoglobulins and their subclasses in brain tissue has not been explored. In this study, examination of pathologically diagnosed frontal cortex gray matter revealed significantly higher levels of IgM and IgG in late-stage AD (Braak and Braak stages V and VI) compared to age-matched controls. While levels of IgG2 and IgG4 constant region fragments were higher in late-stage AD, concentration of native-state IgG4 with free Fc regions was increased in AD III and VI. RNA analysis did not support parenchymal B-cell production of IgG4 in AD III and V, indicating possible peripheral or meningeal B-cell involvement. Changes in the profile of IgM, IgG and IgG subclasses in AD frontal cortex may provide insight into understanding disease pathogenesis and progression.


Assuntos
Doença de Alzheimer , Encéfalo , Lobo Frontal , Humanos , Imunoglobulina G , Imunoglobulina M
11.
Anal Chim Acta ; 1180: 338880, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538324

RESUMO

We present a direct injection mass spectrometry (DI-MS) platform that accurately, precisely, and quickly quantitates global levels of DNA cytidine methylation (5 mC) and hydroxymethylation (5hmC). Our platform combines an Advion TriVersa NanoMate coupled online to a Thermo Scientific Orbitrap Fusion Lumos. Following digestion to nucleosides, the DNA samples are analyzed at the rate of <1 min per injection with comparable detection limits of 0.63 ng/µL and 0.31 ng/µL, respectively. In contrast, the detection limits for 5 mC and 5hmC in state-of-art nano liquid chromatography (LC) coupled to online mass spectrometry (nLC-MS) are notably different (0.04 ng/µL and 2.5 ng/µL, respectively). The high sensitivity of DI-MS is achieved by optimizing sample buffer composition, the source fragmentation energy, and the radio frequency of the instrument ion funnel. DI-MS accurately reports the relative abundance of 5 mC and 5hmC over a range of 1%-7% (R2 > 0.98) and 0.13%-1.75% (R2 > 0.99), respectively. Accurate measurement of C, 5 mC and 5hmC is achieved by optimizing in-source fragmentation to obtain a population of up to 93% of just the nucleoside base. This protocol minimizes base dimer formation and partial base-deoxyribose dissociation in gas phase and greatly improves modified base quantitation. We also demonstrate that DI-MS overcomes biases in differential chromatographic retention and issues of sample degradation in the autosampler due to its high throughput. Finally, we present an application of our workflow to quantify DNA modifications on a batch of 81 samples in about 1.5 h.


Assuntos
Metilação de DNA , DNA , Viés , Cromatografia Líquida , Espectrometria de Massas
12.
Cell ; 184(13): 3486-3501.e21, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34077751

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a World Health Organization priority pathogen. CCHFV infections cause a highly lethal hemorrhagic fever for which specific treatments and vaccines are urgently needed. Here, we characterize the human immune response to natural CCHFV infection to identify potent neutralizing monoclonal antibodies (nAbs) targeting the viral glycoprotein. Competition experiments showed that these nAbs bind six distinct antigenic sites in the Gc subunit. These sites were further delineated through mutagenesis and mapped onto a prefusion model of Gc. Pairwise screening identified combinations of non-competing nAbs that afford synergistic neutralization. Further enhancements in neutralization breadth and potency were attained by physically linking variable domains of synergistic nAb pairs through bispecific antibody (bsAb) engineering. Although multiple nAbs protected mice from lethal CCHFV challenge in pre- or post-exposure prophylactic settings, only a single bsAb, DVD-121-801, afforded therapeutic protection. DVD-121-801 is a promising candidate suitable for clinical development as a CCHFV therapeutic.


Assuntos
Anticorpos Neutralizantes/imunologia , Febre Hemorrágica da Crimeia/imunologia , Sobreviventes , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antígenos Virais/metabolismo , Fenômenos Biofísicos , Chlorocebus aethiops , Mapeamento de Epitopos , Epitopos/metabolismo , Feminino , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Humanos , Imunoglobulina G/metabolismo , Masculino , Camundongos , Testes de Neutralização , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/imunologia , Células Vero , Proteínas Virais/química
13.
MethodsX ; 8: 101585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004218

RESUMO

DNA modifications are small covalent chemical groups that modify nucleotides to regulate DNA readout. Anomalous abundance and genome-wide localization of these modifications can negatively tune gene expression and propagate into unbalanced epigenetics regulation, which is known to be associated with multiple conditions such as cancer, diabetes and aging. We present a direct injection mass spectrometry (DI-MS) platform that offers fast, accurate and precise quantitation of global levels of DNA cytidine methylation (mC) and hydroxymethylation (hmC) in less than one minute per sample. On the contrary to most methods adopting mass spectrometry for the analysis of nucleotide modifications, in this DI-MS approach we eliminate the use of liquid chromatography, increasing throughput, eliminating issues of carryover and batch effects caused by column contamination across samples. In addition, potential biases in detection efficiency of modified nucleotides with different binding efficiency to stationary phases is eliminated, as no chromatographic separation is adopted. This method can analyze >1000 samples per day, overcoming the throughput of next-generation sequencing.•Direct injection mass spectrometry improves throughput and precision compared to liquid chromatography.•Direct injection can be used to quantify in less than one minute global levels of DNA methylation and hydroxymethylation.•The unbiased acquisition can be potentially utilized to analyze other nucleotide modifications.

14.
PLoS Pathog ; 16(12): e1008771, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370417

RESUMO

The intracellular parasite Toxoplasma gondii infects a large proportion of humans worldwide and can cause adverse complications in the settings of immune-compromise and pregnancy. T. gondii thrives within many different cell types due in part to its residence within a specialized and heavily modified compartment in which the parasite divides, termed the parasitophorous vacuole. Within this vacuole, numerous proteins optimize intracellular survival following their secretion by the parasite. We investigated the contribution of one of these proteins, TgPPM3C, predicted to contain a PP2C-class serine/threonine phosphatase domain and previously shown to interact with the protein MYR1, an essential component of a putative vacuolar translocon that mediates effector export into the host cell. Parasites lacking the TgPPM3C gene exhibit a minor growth defect in vitro, are avirulent during acute infection in mice, and form fewer cysts in mouse brain during chronic infection. Phosphoproteomic assessment of TgPPM3C deleted parasite cultures demonstrated alterations in the phosphorylation status of many secreted vacuolar proteins including two exported effector proteins, GRA16 and GRA28, as well as MYR1. Parasites lacking TgPPM3C are defective in GRA16 and GRA28 export, but not in the export of other MYR1-dependant effectors. Phosphomimetic mutation of two GRA16 serine residues results in export defects, suggesting that de-phosphorylation is a critical step in the process of GRA16 export. These findings provide another example of the emerging role of phosphatases in regulating the complex environment of the T. gondii parasitophorous vacuole and influencing the export of specific effector proteins from the vacuolar lumen into the host cell.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Toxoplasma/enzimologia , Toxoplasmose/metabolismo , Vacúolos/metabolismo , Fatores de Virulência/metabolismo , Animais , Interações Hospedeiro-Patógeno/fisiologia , Camundongos , Transporte Proteico
15.
Mol Omics ; 16(6): 573-582, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32968743

RESUMO

Proteomics studies generate tables with thousands of entries. A significant component of being a proteomics scientist is the ability to process these tables to identify regulated proteins. Many bioinformatics tools are freely available for the community, some of which within reach for scientists with limited or no background in programming and statistics. However, proteomics has become popular in most other biological and biomedical disciplines, resulting in more and more studies where data processing is delegated to specialists that are not lead authors of the scientific project. This creates a risk or at least a limiting factor, as the biological interpretation of a dataset is contingent of a third-party specialist transforming data without the input of the project leader. We acknowledge in advance that dedicated scripts and software have a higher level of sophistication; but we hereby claim that the approach we describe makes proteomics data processing immediately accessible to every scientist. In this paper, we describe key steps of the typical data transformation, normalization and statistics in proteomics data analysis using a simple spreadsheet. This manuscript aims to demonstrate to those who are not familiar with the math and statistics behind these workflows that a proteomics dataset can be processed, simplified and interpreted in software like Microsoft Excel. With this, we aim to reach the community of non-specialists in proteomics to find a common language and illustrate the basic steps of -omics data processing.


Assuntos
Proteínas/análise , Proteômica , Padrões de Referência
16.
J Mol Histol ; 51(5): 559-571, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32794037

RESUMO

Severe aortic stenosis (AS) is prevalent in adults ≥ 65 years, a significant cause of morbidity and mortality, with no medical therapy. Lipid and proteomic alterations of human AS tissue were determined using mass spectrometry imaging (MSI) and liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to understand histopathology, potential biomarkers of disease, and progression from non-calcified to calcified phenotype. A reproducible MSI method was developed using healthy murine aortic valves (n = 3) and subsequently applied to human AS (n = 2). Relative lipid levels were spatially mapped and associated with different microdomains. Proteomics for non-calcified and calcified microdomains were performed to ascertain differences in expression. Increased pro-osteogenic and inflammatory lysophosphatidylcholine (LPC) 16:0 and 18:0 were co-localized with calcified microdomains. Proteomics analysis identified differential patterns in calcified microdomains with high LPC and low cholesterol as compared to non-calcified microdomains with low LPC and high cholesterol. Calcified microdomains had higher levels of: apolipoproteins (Apo) B-100 (p < 0.001) and Apo A-IV (p < 0.001), complement C3 and C4-B (p < 0.001), C5 (p = 0.007), C8 beta chain (p = 0.013) and C9 (p = 0.010), antithrombotic proteins alpha-2-macroglobulin (p < 0.0001) and antithrombin III (p = 0.002), and higher anti-calcific fetuin-A (p = 0.02), while the osteoblast differentiating factor transgelin (p < 0.0001), extracellular matrix proteins versican, prolargin, and lumican ( p < 0.001) and regulator protein complement factor H (p < 0.001) were higher in non-calcified microdomains. A combined lipidomic and proteomic approach provided insight into factors potentially contributing to progression from non-calcified to calcific disease in severe AS. Additional studies of these candidates and protein networks could yield new targets for slowing progression of AS.


Assuntos
Estenose da Valva Aórtica/metabolismo , Biomarcadores , Lipídeos/sangue , Espectrometria de Massas , Proteoma , Proteômica , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/diagnóstico , Estenose da Valva Aórtica/etiologia , Cromatografia Líquida , Modelos Animais de Doenças , Humanos , Camundongos , Proteômica/métodos , Índice de Gravidade de Doença , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Biology (Basel) ; 9(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604817

RESUMO

Chromatin accessibility is a major regulator of gene expression. Histone writers/erasers have a critical role in chromatin compaction, as they "flag" chromatin regions by catalyzing/removing covalent post-translational modifications on histone proteins. Anomalous chromatin decondensation is a common phenomenon in cells experiencing aging and viral infection. Moreover, about 50% of cancers have mutations in enzymes regulating chromatin state. Numerous genomics methods have evolved to characterize chromatin state, but the analysis of (in)accessible chromatin from the protein perspective is not yet in the spotlight. We present an overview of the most used approaches to generate data on chromatin accessibility and then focus on emerging methods that utilize mass spectrometry to quantify the accessibility of histones and the rest of the chromatin bound proteome. Mass spectrometry is currently the method of choice to quantify entire proteomes in an unbiased large-scale manner; accessibility on chromatin of proteins and protein modifications adds an extra quantitative layer to proteomics dataset that assist more informed data-driven hypotheses in chromatin biology. We speculate that this emerging new set of methods will enhance predictive strength on which proteins and histone modifications are critical in gene regulation, and which proteins occupy different chromatin states in health and disease.

18.
Front Cell Dev Biol ; 8: 212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300591

RESUMO

MGAT1 and complex N-glycans are required for spermatogenesis and fertility. Conditional deletion of Mgat1 in spermatogonia (Mgat1 cKO) causes reduced ERK1/2 signaling and the formation of multinucleated germ cells (MNC). Here we show that glycomics analysis of N-glycans released from fixed testis sections and analyzed by MALDI imaging mass spectrometry (MALDI-IMS) revealed a loss of MGAT1 activity in all germ cells based on the accumulation of the oligomannosyl substrate of MGAT1. To determine in which type of germ cell MGAT1 is essential for spermatogenesis, we generated Mgat1 cKO males that also expressed a Mgat1-HA transgene under the control of a germ cell-specific promoter - Stra8 for spermatogonia, Ldhc for spermatocytes and Prm1 for spermatids. Males expressing each Mgat1-HA transgene were fertile, and both males and females transmitted each transgene. When Stra8-Mgat1-HA was expressed in Mgat1 cKO males, spermatogenesis was rescued based on the morphology of testis sections, the complement of N-glycans on basigin, lectin histochemistry, MALDI-IMS, and fertility. By contrast, neither Ldhc-Mgat1-HA expressed in spermatocytes, nor the Prm1-Mgat1-HA transgene expressed in spermatids rescued spermatogenesis or fertility in Mgat1 cKO males. Therefore, MGAT1 must be expressed in spermatogonia for spermatogenesis to proceed normally.

19.
Sci Rep ; 10(1): 2135, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034218

RESUMO

Male germ cells are sensitive to heat stress and testes must be maintained outside the body for optimal fertility. However, no germ cell intrinsic mechanism that protects from heat has been reported. Here, we identify the germ cell specific Golgi glycoprotein MGAT4D as a protector of male germ cells from heat stress. Mgat4d is highly expressed in spermatocytes and spermatids. Unexpectedly, when the Mgat4d gene was inactivated globally or conditionally in spermatogonia, or mis-expressed in spermatogonia, spermatocytes or spermatids, neither spermatogenesis nor fertility were affected. On the other hand, when males were subjected to mild heat stress of the testis (43 °C for 25 min), germ cells with inactivated Mgat4d were markedly more sensitive to the effects of heat stress, and transgenic mice expressing Mgat4d were partially protected from heat stress. Germ cells lacking Mgat4d generally mounted a similar heat shock response to control germ cells, but could not maintain that response. Several pathways activated by heat stress in wild type were induced to a lesser extent in Mgat4d[-/-] heat-stressed germ cells (NFκB response, TNF and TGFß signaling, Hif1α and Myc genes). Thus, the Golgi glycoprotein MGAT4D is a novel, intrinsic protector of male germ cells from heat stress.


Assuntos
Células Germinativas/metabolismo , Glicoproteínas/metabolismo , Complexo de Golgi/metabolismo , Transtornos de Estresse por Calor/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Membrana/metabolismo , Testículo/metabolismo , Animais , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermátides/metabolismo , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Espermatogônias/metabolismo , Espermatozoides/metabolismo
20.
Nanomedicine ; 20: 102009, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085344

RESUMO

The emergence and widespread distribution of multi-drug resistant bacteria are considered as a major public health concern. The inabilities to curb severe infections due to antibiotic resistance have increased healthcare costs as well as patient morbidity and mortality. Bacterial biofilms formed by drug-resistant bacteria add additional challenges to treatment. This study describes a solgel based nanoparticle system loaded with garlic extract (GE-np) that exhibits: i) slow and sustained release of garlic components; ii) stabilization of the active components; and iii) significant enhancement of antimicrobial and antibiofilm activity relative to the free garlic extract. Also, GE-np were efficient in penetrating and disrupting the well-established methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Overall, the study suggests that GE-np might be a promising candidate for the treatment of chronic infections due to biofilm forming drug-resistant bacteria.


Assuntos
Biofilmes/efeitos dos fármacos , Alho/química , Nanopartículas/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Dissulfetos , Testes de Sensibilidade Microbiana , Ácidos Sulfínicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA