Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(8): 2767-2774, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35106614

RESUMO

Analysis of the dipicolinic acid (DPA) released from Clostridium botulinum spores during thermal processing is crucial to obtaining a mechanistic understanding of the factors involved in spore heat resistance and related food safety applications. Here, we developed a novel mixed-mode liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection of the DPA released from C. botulinum type A, nonproteolytic types B and F strains, and nonpathogenic surrogate Clostridium sporogenes PA3679 spores. DPA was retained on a mixed-mode C18/anion exchange column and was detected using electrospray ionization (ESI) positive mode within a 4-min analysis time. The intraday and interday precision (%CV) was 1.94-3.46% and 4.04-8.28%, respectively. Matrix effects were minimal across proteolytic type A Giorgio-A, nonproteolytic types QC-B and 202-F, and C. sporogenes PA3679 spore suspensions (90.1-114% of spiked DPA concentrations). DPA recovery in carrot juice and beef broth ranged from 105 to 118%, indicating limited matrix effects of these food products. Experiments that assessed the DPA released from Giorgio-A spores over the course of a 5-min thermal treatment at 108 °C found a significant correlation (R = 0.907; P < 0.05) between the log reduction of spores and amount of DPA released. This mixed-mode LC-MS/MS method provides a means for rapid detection of DPA released from C. botulinum spores during thermal processing and has the potential to be used for experiments in the field of food safety that assess the thermal resistance characteristics of various C. botulinum spore types.


Assuntos
Clostridium botulinum , Ácidos Picolínicos , Cromatografia Líquida , Clostridium botulinum/química , Temperatura Alta , Ácidos Picolínicos/análise , Esporos Bacterianos/química , Espectrometria de Massas em Tandem
2.
J Food Prot ; 84(3): 442-448, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33125074

RESUMO

The microbial safety concern associated with thermally processed extended shelf life (ESL) refrigerated foods is based on adequate elimination of spore-forming pathogens such as nonproteolytic Clostridium botulinum types B, E, and F. These pathogens are traditionally regarded as targets for validation of thermally processed ESL foods. However, their use for research is restricted due to their designation as select agents. In this study, the thermal resistances of spores of 10 nonproteolytic C. botulinum types B and F and seven psychrotrophic Bacillus cereus strains were evaluated in ACES (N-(2-acetamido)-2-aminoethanesulfonic acid) buffer (0.05 M, pH 7.00) and compared to determine whether any of the B. cereus strains could serve as a nonselect agent for establishing thermal processes for ESL refrigerated foods. Thermal decimal reduction times (DT-values) of both nonproteolytic C. botulinum types B and F and psychrotrophic B. cereus strains decreased as process temperature increased from 80 to 91°C, and the highest values were obtained at 80°C. All psychrotrophic B. cereus strains tested were more thermally resistant than nonproteolytic C. botulinum types B and F. DT-values of nonproteolytic C. botulinum types B and F decreased to <1.0 min at 87°C, whereas all psychrotrophic B. cereus strains had higher DT-values (i.e., 52.35 to 133.69 min) at the same temperature. Among all psychrotrophic B. cereus strains tested, BC-6A16 had the highest DT-values at any given temperature. The DT-values indicated that the psychrotrophic B. cereus strains were more thermally resistant than the nonproteolytic C. botulinum strains and therefore may be potential target pathogens for thermal process validation of ESL refrigerated foods. However, further comparative challenge studies are needed with a model food system or an ESL refrigerated food to confirm these results.


Assuntos
Bacillus cereus , Clostridium botulinum , Microbiologia de Alimentos , Temperatura Alta , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA