Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1357839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384273

RESUMO

The biopurification systems (BPS) or biobeds are employed for the treatment of pesticide-containing wastewater of agricultural origin. The use of these devices for pesticide removal requires the proper optimization of the composition of biomixtures (BPS active matrix) according to the target pesticides applied on a specific crop and the available materials used in their elaboration. This work aims to design a biomixture for the simultaneous treatment of several pesticides applied in coffee crops, according to local practices in Costa Rica. Three biomixtures containing either coffee husk, coconut fiber or rice husk (as the lignocellulosic substrate) were applied for the removal of 12 pesticides. The profiles of pesticide elimination and the mineralization of radiolabeled chlorpyrifos (14C-chlorpyrifos) revealed that the best performance was achieved with the coconut fiber biomixture, even though similar detoxification patterns were determined in every biomixture (according to immobilization in Daphnia magna and germination tests in Lactuca sativa). The optimization of this biomixture's composition by means of a central composite design permitted the definition of two optimal compositions (compost:soil:coconut fiber, % v/v) that maximized pesticide removal: i. 29:7.3:63.7 and ii. 11:7.3:81.7. The validation of these optimized compositions also included the use of an alternative soil from another coffee farm and resulted in overall DT50 values of 7.8-9.0 d for the pesticide mixture. Considering the removal kinetics in the optimized biomixture, a 1 m3 BPS prototype was dimensioned to be eventually used in local coffee farms. This work provides relevant information for the design and implementation of BPS at on-farm conditions for the treatment of pesticide-containing wastewater of a major crop.

2.
J Environ Manage ; 184(Pt 2): 371-379, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742154

RESUMO

The purpose of this study was to implement and evaluate a pilot-scale and closed-loop system that synergistically combines solar thermal collector, anaerobic digester, and constructed treatment wetland to simultaneously treat and utilize organic wastes. The system utilizes 863 kg of mixed animal and food wastes to generate 263 MJ renewable energy, produced 28 kg nitrogen and phosphorus fertilizer, and reclaimed 550 kg water per day. The net revenue considering electricity and fertilizer was $2436 annually. The payback period for the system is estimated to be 17.8 years for a relatively dilute waste stream (i.e., 2% total solids). The implemented system has successfully demonstrated a self-efficient and flexible waste utilization and treatment system. It creates a win-win solution to satisfy the energy needs of the community and address environmental concerns of organic wastes disposal in the region.


Assuntos
Energia Solar , Gerenciamento de Resíduos/métodos , Áreas Alagadas , Anaerobiose , Animais , Reatores Biológicos , América Central , Costa Rica , Fertilizantes , Alimentos , Esterco , Nitrogênio , Fósforo , Projetos Piloto , Energia Renovável , Energia Solar/economia , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/instrumentação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA