Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747931

RESUMO

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Assuntos
Neurônios , Doenças Priônicas , Príons , Sulfotransferases , Animais , Camundongos , Heparitina Sulfato/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Príons/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
2.
J Neurosci ; 43(21): 3970-3984, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37019623

RESUMO

Endolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs. To determine how the reduction in ESCRT-0 impacts prion conversion and cellular toxicity in vivo, we prion-challenged conditional knockout mice (male and female) having Hrs deleted from neurons, astrocytes, or microglia. The neuronal, but not astrocytic or microglial, Hrs-depleted mice showed a shortened survival and an acceleration in synaptic derangements, including an accumulation of ubiquitinated proteins, deregulation of phosphorylated AMPA and metabotropic glutamate receptors, and profoundly altered synaptic structure, all of which occurred later in the prion-infected control mice. Finally, we found that neuronal Hrs (nHrs) depletion increased surface levels of the cellular prion protein, PrPC, which may contribute to the rapidly advancing disease through neurotoxic signaling. Taken together, the reduced Hrs in the prion-affected brain hampers ubiquitinated protein clearance at the synapse, exacerbates postsynaptic glutamate receptor deregulation, and accelerates neurodegeneration.SIGNIFICANCE STATEMENT Prion diseases are rapidly progressive neurodegenerative disorders characterized by prion aggregate spread through the central nervous system. Early disease features include ubiquitinated protein accumulation and synapse loss. Here, we investigate how prion aggregates alter ubiquitinated protein clearance pathways (ESCRT) in mouse and human prion-infected brain, discovering a marked reduction in Hrs. Using a prion-infection mouse model with neuronal Hrs (nHrs) depleted, we show that low neuronal Hrs is detrimental and markedly shortens survival time while accelerating synaptic derangements, including ubiquitinated protein accumulation, indicating that Hrs loss exacerbates prion disease progression. Additionally, Hrs depletion increases the surface distribution of prion protein (PrPC), linked to aggregate-induced neurotoxic signaling, suggesting that Hrs loss in prion disease accelerates disease through enhancing PrPC-mediated neurotoxic signaling.


Assuntos
Doenças Neurodegenerativas , Doenças Priônicas , Príons , Masculino , Feminino , Camundongos , Humanos , Animais , Príons/metabolismo , Proteínas Priônicas/metabolismo , Receptores de AMPA/metabolismo , Neurônios/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Doenças Neurodegenerativas/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo
3.
Neurobiol Dis ; 172: 105834, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905927

RESUMO

Synapse dysfunction and loss are central features of neurodegenerative diseases, caused in part by the accumulation of protein oligomers. Amyloid-ß, tau, prion, and α-synuclein oligomers bind to the cellular prion protein (PrPC), resulting in the activation of macromolecular complexes and signaling at the post-synapse, yet the early signaling events are unclear. Here we sought to determine the early transcript and protein alterations in the hippocampus during the pre-clinical stages of prion disease. We used a transcriptomic approach focused on the early-stage, prion-infected hippocampus of male wild-type mice, and identify immediate early genes, including the synaptic activity response gene, Arc/Arg3.1, as significantly upregulated. In a longitudinal study of male, prion-infected mice, Arc/Arg-3.1 protein was increased early (40% of the incubation period), and by mid-disease (pre-clinical), phosphorylated AMPA receptors (pGluA1-S845) were increased and metabotropic glutamate receptors (mGluR5 dimers) were markedly reduced in the hippocampus. Notably, sporadic Creutzfeldt-Jakob disease (sCJD) post-mortem cortical samples also showed low levels of mGluR5 dimers. Together, these findings suggest that prions trigger an early Arc response, followed by an increase in phosphorylated GluA1 and a reduction in mGluR5 receptors.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Peptídeos beta-Amiloides/metabolismo , Animais , Síndrome de Creutzfeldt-Jakob/metabolismo , Hipocampo/metabolismo , Estudos Longitudinais , Masculino , Camundongos , Príons/metabolismo
4.
J Alzheimers Dis ; 88(3): 1137-1145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754278

RESUMO

BACKGROUND: Neurodegenerative diseases are widespread yet challenging to diagnose and stage antemortem. As an extension of the central nervous system, the eye harbors retina ganglion cells vulnerable to degeneration, and visual symptoms are often an early manifestation of neurodegenerative disease. OBJECTIVE: Here we test whether prion protein aggregates could be detected in the eyes of live mice using an amyloid-binding fluorescent probe and high-resolution retinal microscopy. METHODS: We performed retinal imaging on an experimental mouse model of prion-associated cerebral amyloid angiopathy in a longitudinal study. An amyloid-binding fluorophore was intravenously administered, and retinal imaging was performed at timepoints corresponding to early, mid-, and terminal prion disease. Retinal amyloid deposits were quantified and compared to the amyloid load in the brain. RESULTS: We report that by early prion disease (50% timepoint), discrete fluorescent foci appeared adjacent to the optic disc. By later timepoints, the fluorescent foci surrounded the optic disc and tracked along retinal vasculature. CONCLUSION: The progression of perivascular amyloid can be directly monitored in the eye by live imaging, illustrating the utility of this technology for diagnosing and monitoring the progression of cerebral amyloid angiopathy.


Assuntos
Doença de Alzheimer , Amiloidose , Angiopatia Amiloide Cerebral , Doenças Neurodegenerativas , Doenças Priônicas , Príons , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Angiopatia Amiloide Cerebral/metabolismo , Estudos Longitudinais , Camundongos , Doenças Priônicas/diagnóstico por imagem , Doenças Priônicas/metabolismo , Príons/metabolismo , Retina/diagnóstico por imagem , Retina/metabolismo
5.
Sci Rep ; 11(1): 14309, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253783

RESUMO

E/D163 polymorphism of dog prion protein (PrP) has been recently proposed as the variant responsible for canid prion resistance. To further investigate the protective role of this variant against prion replication, the transgenic mouse model OvPrP-Tg532 expressing sheep/goat PrP carrying the substitution D162 (equivalent to D163 position of dog PrP) was generated and intracranially inoculated with a broad collection of small ruminant prion strains. OvPrP-Tg532 mice showed resistance to classical bovine spongiform encephalopathy (BSE) from sheep and some classical scrapie isolates from sheep and goat but were susceptible to ovine atypical L-BSE and numerous classical scrapie isolates. Strikingly, some of these classical scrapie isolates showed a shift in their prion strain properties. These results suggest that other PrP residues apart from E/D163 variant of dog PrP or factors distinct than PrP may participate in prion resistance of canids and that different factors may be required for D162 sheep PrP to provide effective protection to sheep against ruminant prions.


Assuntos
Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Animais , Cães , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Doenças Priônicas/genética , Proteínas Priônicas/genética , Modelos de Riscos Proporcionais , Ruminantes/microbiologia , Scrapie/microbiologia , Ovinos
6.
Vet Res ; 52(1): 57, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858518

RESUMO

The diversity of goat scrapie strains in Europe has recently been studied using bioassays in a wide collection of rodent models, resulting in the classification of classical scrapie into four different categories. However, the sole use of the first passage does not lead to isolate adaptation and identification of the strains involved and might therefore lead to misclassification of some scrapie isolates. Therefore, this work reports the complete transmission study of a wide collection of goat transmissible spongiform encephalopathy (TSE) isolates by intracranial inoculation in two transgenic mouse lines overexpressing either small ruminant (TgGoat-ARQ) or bovine (TgBov) PrPC. To compare scrapie strains in sheep and goats, sheep scrapie isolates from different European countries were also included in the study. Once the species barrier phenomenon was overcome, an accurate classification of the isolates was attained. Thus, the use of just two rodent models allowed us to fully differentiate at least four different classical scrapie strains in small ruminants and to identify isolates containing mixtures of strains. This work reinforces the idea that classical scrapie in small ruminants is a prion disease caused by multiple different prion strains and not by a single strain, as is the case for epidemic classical bovine spongiform encephalopathy (BSE-C). In addition, the clear dissimilarity between the different scrapie strains and BSE-C does not support the idea that classical scrapie is the origin of epidemic BSE-C.


Assuntos
Doenças das Cabras/etiologia , Príons/efeitos adversos , Scrapie/etiologia , Doenças dos Ovinos/etiologia , Animais , Europa (Continente) , Cabras , Ovinos , Carneiro Doméstico
7.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727358

RESUMO

Early studies in transgenic mouse lines have shown that the coexpression of endogenous murine prion protein (PrPC) and transgenic PrPC from another species either inhibits or allows the propagation of prions, depending on the infecting prion strain and interacting protein species. The way whereby this phenomenon, so-called "interference," is modulated remains to be determined. In this study, different transgenic mouse lines were crossbred to produce mice coexpressing bovine and porcine PrPC, bovine and murine PrPC, or murine and porcine PrPC These animals and their respective hemizygous controls were inoculated with several prion strains from different sources (cattle, mice, and pigs) to examine the effects of the simultaneous presence of PrPC from two different species. Our results indicate interference with the infection process, manifested as extended survival times and reduced attack rates. The interference with the infectious process was reduced or absent when the potentiality interfering PrPC species was efficiently converted by the inoculated agent. However, the propagation of the endogenous murine PrPSc was favored, allowing us to speculate that host-specific factors may disturb the interference caused by the coexpression of an exogenous second PrPCIMPORTANCE Prion propagation can be interfered with by the expression of a second prion protein in the host. In the present study, we investigated prion propagation in a host expressing two different prion protein genes. Our findings indicate that the ability of the second prion protein to interfere with prion propagation is related to the transmissibility of the prion in the host expressing only the interfering prion protein. The interference detected occurs in a prion strain-dependent manner. Interestingly, a bias favoring the propagation of the murine PrP allele has been observed. These results open the door to future studies in order to determine the role of host factors other than the PrP amino acid sequence in the interference in prion propagation.


Assuntos
Alelos , Interações Hospedeiro-Patógeno/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Príons/genética , Príons/fisiologia , Sequência de Aminoácidos , Animais , Bovinos/genética , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteínas PrPC/metabolismo , Scrapie , Suínos/genética
9.
J Infect Dis ; 223(6): 1103-1112, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-31919511

RESUMO

Although experimental transmission of bovine spongiform encephalopathy (BSE) to pigs and transgenic mice expressing pig cellular prion protein (PrPC) (porcine PrP [PoPrP]-Tg001) has been described, no natural cases of prion diseases in pig were reported. This study analyzed pig-PrPC susceptibility to different prion strains using PoPrP-Tg001 mice either as animal bioassay or as substrate for protein misfolding cyclic amplification (PMCA). A panel of isolates representatives of different prion strains was selected, including classic and atypical/Nor98 scrapie, atypical-BSE, rodent scrapie, human Creutzfeldt-Jakob-disease and classic BSE from different species. Bioassay proved that PoPrP-Tg001-mice were susceptible only to the classic BSE agent, and PMCA results indicate that only classic BSE can convert pig-PrPC into scrapie-type PrP (PrPSc), independently of the species origin. Therefore, conformational flexibility constraints associated with pig-PrP would limit the number of permissible PrPSc conformations compatible with pig-PrPC, thus suggesting that pig-PrPC may constitute a paradigm of low conformational flexibility that could confer high resistance to the diversity of prion strains.


Assuntos
Encefalopatia Espongiforme Bovina , Príons , Scrapie , Animais , Encéfalo/metabolismo , Bovinos , Encefalopatia Espongiforme Bovina/transmissão , Camundongos , Camundongos Transgênicos , Proteínas PrPSc , Proteínas Priônicas , Príons/metabolismo , Suínos
10.
Neuropathol Appl Neurobiol ; 47(4): 506-518, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33253417

RESUMO

AIMS: The amino acid sequence of prion protein (PrP) is a key determinant in the transmissibility of prion diseases. While PrP sequence is highly conserved among mammalian species, minor changes in the PrP amino acid sequence may confer alterations in the transmissibility of prion diseases. Classical bovine spongiform encephalopathy (C-BSE) is the only zoonotic prion strain reported to date causing variant Creutzfeldt-Jacob disease (vCJD) in humans, although experimental transmission points to atypical L-BSE and some classical scrapie isolates as also zoonotic. The precise molecular elements in the human PrP sequence that limit the transmissibility of prion strains such as sheep/goat scrapie or cervid chronic wasting disease (CWD) are not well known. METHODS: The transmissibility of a panel of diverse prions from different species was compared in transgenic mice expressing either wild-type human PrPC (MDE-HuTg340) or a mutated human PrPC harbouring Val166 -Gln168 amino acid changes (VDQ-HuTg372) in the ß2-α2 loop instead of Met166 -Glu168 wild-type variants. RESULTS: VDQ-HuTg372 mice were more susceptible to prions than MDE-HuTg340 mice in a strain-dependent manner. CONCLUSIONS: Met166 -Glu168 amino acid residues present in wild-type human PrPC are molecular determinants that limit the propagation of most prion strains assayed in the human PrP context.


Assuntos
Aminoácidos/química , Doenças Priônicas/fisiopatologia , Proteínas Priônicas/química , Animais , Evolução Molecular , Humanos , Camundongos Transgênicos
11.
Emerg Infect Dis ; 26(6): 1130-1139, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32441630

RESUMO

Classical bovine spongiform encephalopathy (BSE) is the only zoonotic prion disease described to date. Although the zoonotic potential of atypical BSE prions have been partially studied, an extensive analysis is still needed. We conducted a systematic study by inoculating atypical BSE isolates from different countries in Europe into transgenic mice overexpressing human prion protein (PrP): TgMet129, TgMet/Val129, and TgVal129. L-type BSE showed a higher zoonotic potential in TgMet129 mice than classical BSE, whereas Val129-PrP variant was a strong molecular protector against L-type BSE prions, even in heterozygosis. H-type BSE could not be transmitted to any of the mice. We also adapted 1 H- and 1 L-type BSE isolate to sheep-PrP transgenic mice and inoculated them into human-PrP transgenic mice. Atypical BSE prions showed a modification in their zoonotic ability after adaptation to sheep-PrP producing agents able to infect TgMet129 and TgVal129, bearing features that make them indistinguishable of sporadic Creutzfeldt-Jakob disease prions.


Assuntos
Encefalopatia Espongiforme Bovina , Doenças Priônicas , Príons , Animais , Encéfalo/metabolismo , Bovinos , Europa (Continente) , Camundongos , Camundongos Transgênicos , Príons/genética , Príons/metabolismo , Ovinos
13.
J Clin Invest ; 130(3): 1350-1362, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31985492

RESUMO

Posttranslational modifications (PTMs) are common among proteins that aggregate in neurodegenerative disease, yet how PTMs impact the aggregate conformation and disease progression remains unclear. By engineering knockin mice expressing prion protein (PrP) lacking 2 N-linked glycans (Prnp180Q/196Q), we provide evidence that glycans reduce spongiform degeneration and hinder plaque formation in prion disease. Prnp180Q/196Q mice challenged with 2 subfibrillar, non-plaque-forming prion strains instead developed plaques highly enriched in ADAM10-cleaved PrP and heparan sulfate (HS). Intriguingly, a third strain composed of intact, glycophosphatidylinositol-anchored (GPI-anchored) PrP was relatively unchanged, forming diffuse, HS-deficient deposits in both the Prnp180Q/196Q and WT mice, underscoring the pivotal role of the GPI-anchor in driving the aggregate conformation and disease phenotype. Finally, knockin mice expressing triglycosylated PrP (Prnp187N) challenged with a plaque-forming prion strain showed a phenotype reversal, with a striking disease acceleration and switch from plaques to predominantly diffuse, subfibrillar deposits. Our findings suggest that the dominance of subfibrillar aggregates in prion disease is due to the replication of GPI-anchored prions, with fibrillar plaques forming from poorly glycosylated, GPI-anchorless prions that interact with extracellular HS. These studies provide insight into how PTMs impact PrP interactions with polyanionic cofactors, and highlight PTMs as a major force driving the prion disease phenotype.


Assuntos
Mutação de Sentido Incorreto , Oligossacarídeos/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Substituição de Aminoácidos , Animais , Camundongos , Camundongos Transgênicos , Oligossacarídeos/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia , Proteínas Priônicas/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia
14.
Sci Rep ; 10(1): 19, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913327

RESUMO

Bovine Spongiform Encephalopathy (BSE) is the only animal prion which has been recognized as a zoonotic agent so far. The identification of BSE in two goats raised the need to reliably identify BSE in small ruminants. However, our understanding of scrapie strain diversity in small ruminants remains ill-defined, thus limiting the accuracy of BSE surveillance and spreading fear that BSE might lurk unrecognized in goats. We investigated prion strain diversity in a large panel of European goats by a novel experimental approach that, instead of assessing the neuropathological profile after serial transmissions in a single animal model, was based on the direct interaction of prion isolates with several recipient rodent models expressing small ruminants or heterologous prion proteins. The findings show that the biological properties of scrapie isolates display different patterns of geographical distribution in Europe and suggest that goat BSE could be reliably discriminated from a wide range of biologically and geographically diverse goat prion isolates. Finally, most field prion isolates showed composite strain features, with discrete strain components or sub-strains being present in different proportions in individual goats or tissues. This has important implications for understanding the nature and evolution of scrapie strains and their transmissibility to other species, including humans.


Assuntos
Encefalopatia Espongiforme Bovina/transmissão , Doenças das Cabras/transmissão , Doenças Priônicas/transmissão , Proteínas Priônicas/metabolismo , Príons/classificação , Príons/patogenicidade , Scrapie/transmissão , Animais , Bovinos , Europa (Continente) , Cabras , Camundongos , Proteínas Priônicas/genética , Príons/genética
15.
Acta Neuropathol ; 139(3): 527-546, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31673874

RESUMO

Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1+/-) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.


Assuntos
Proteína ADAM10/metabolismo , Heparitina Sulfato/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Camundongos
16.
Proc Natl Acad Sci U S A ; 116(52): 26853-26862, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843908

RESUMO

Atypical/Nor98 scrapie (AS) is a prion disease of small ruminants. Currently there are no efficient measures to control this form of prion disease, and, importantly, the zoonotic potential and the risk that AS might represent for other farmed animal species remains largely unknown. In this study, we investigated the capacity of AS to propagate in bovine PrP transgenic mice. Unexpectedly, the transmission of AS isolates originating from 5 different European countries to bovine PrP mice resulted in the propagation of the classical BSE (c-BSE) agent. Detection of prion seeding activity in vitro by protein misfolding cyclic amplification (PMCA) demonstrated that low levels of the c-BSE agent were present in the original AS isolates. C-BSE prion seeding activity was also detected in brain tissue of ovine PrP mice inoculated with limiting dilutions (endpoint titration) of ovine AS isolates. These results are consistent with the emergence and replication of c-BSE prions during the in vivo propagation of AS isolates in the natural host. These data also indicate that c-BSE prions, a known zonotic agent in humans, can emerge as a dominant prion strain during passage of AS between different species. These findings provide an unprecedented insight into the evolution of mammalian prion strain properties triggered by intra- and interspecies passage. From a public health perspective, the presence of c-BSE in AS isolates suggest that cattle exposure to small ruminant tissues and products could lead to new occurrences of c-BSE.

17.
Sci Rep ; 9(1): 15699, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666632

RESUMO

Cynomolgus macaque has been used for the evaluation of the zoonotic potential of prion diseases, especially for classical-Bovine Spongiform Encephalopathy (classical-BSE) infectious agent. PrP amino acid sequence is considered to play a key role in the susceptibility to prion strains and only one amino acid change may alter this susceptibility. Macaque and human-PrP sequences have only nine amino acid differences, but the effect of these amino acid changes in the susceptibility to dissimilar prion strains is unknown. In this work, the transmissibility of a panel of different prions from several species was compared in transgenic mice expressing either macaque-PrPC (TgMac) or human-PrPC (Hu-Tg340). Similarities in the transmissibility of most prion strains were observed suggesting that macaque is an adequate model for the evaluation of human susceptibility to most of the prion strains tested. Interestingly, TgMac were more susceptible to classical-BSE strain infection than Hu-Tg340. This differential susceptibility to classical-BSE transmission should be taken into account for the interpretation of the results obtained in macaques. It could notably explain why the macaque model turned out to be so efficient (worst case model) until now to model human situation towards classical-BSE despite the limited number of animals inoculated in the laboratory experiments.


Assuntos
Síndrome de Creutzfeldt-Jakob/genética , Encefalopatia Espongiforme Bovina/genética , Doenças Priônicas/genética , Proteínas Priônicas/genética , Sequência de Aminoácidos/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Modelos Animais de Doenças , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Predisposição Genética para Doença , Humanos , Macaca , Macaca fascicularis/genética , Camundongos , Camundongos Transgênicos , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Proteínas Priônicas/metabolismo
18.
Sci Rep ; 9(1): 11396, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388046

RESUMO

Prion diseases are caused by the conversion of physiological PrPC into the pathogenic misfolded protein PrPSc, conferring new properties to PrPSc that vary upon prion strains. In this work, we analyze the thermostability of three prion strains (BSE, RML and 22L) that were heated at 98 °C for 2 hours. PrPSc resistance to proteinase K (PrPres), residual infectivity by mouse bioassay and in vitro templating activity by protein misfolding cyclic amplification (PMCA) were studied. Heated strains showed a huge loss of PrPres and a radically different infectivity loss: RML was the most thermolabile strain (6 to 7 log10 infectivity loss), followed by 22L (5 log10) while BSE was the most thermostable strain with low or null infectivity reduction showing a clear dissociation between PrPres and infectivity. These results indicate that thermostability is a strain-specific feature, measurable by PMCA and mouse bioassay, and a great tool to distinguish prion strains.


Assuntos
Endopeptidase K/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Temperatura Alta/efeitos adversos , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/patogenicidade , Dobramento de Proteína , Estabilidade Proteica , Proteólise
19.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30282706

RESUMO

Co-occurrence of different prion strains into the same host has been recognized as a natural phenomenon for several sporadic Creutzfeldt-Jakob disease (sCJD) patients and natural scrapie cases. The final outcome of prion coinfection is not easily predictable. In addition to the usual factors that influence prion conversion, the replication of one strain may entail positive or negative consequences to the other. The main aim of this study was to gain insights into the prion coinfection and interference concepts and their potential therapeutic implications. Here, different mouse models were challenged with several combinations of prion strains coupled on the basis of the lengths of their incubation periods and the existence/absence of a species barrier in the tested animal model. We found that nontransmissible strains can interfere the replication of fully transmissible strains when there is a species transmission barrier involved, as happened with the combination of a mouse (22L) and a human (sCJD) strain. However, this phenomenon seems to be strain dependent, since no interference was observed when the human strain coinoculated was vCJD. For the other combinations tested in this study, the results suggest that both strains replicate independently without effect on the replication of one over the other. It is common that the strain with more favorable conditions (e.g., a higher speed of disease development or the absence of a species barrier) ends being the only one detectable at the terminal stage of the disease. However, this does not exclude the replication of the least favored strain, leading to situations of the coexistence of prion strains.IMPORTANCE As a general conclusion, the outcome of prion coinfection is strongly dependent on the strain combination and the model utilized and is therefore difficult to predict. The coexistence of several prion strains may remain undetected if one of the strains has more favorable conditions to replicate in the host. The use of several models (such as a transgenic mouse expressing PrP from different species) to analyze field prion isolates is recommended to avoid this situation. The inference effect exerted by nonreplicative prion strains should be considered an interesting tool to advance in new therapeutic strategies for treating prion diseases; it may even be a proper therapeutic strategy.


Assuntos
Encéfalo/metabolismo , Doenças Priônicas/patologia , Príons/classificação , Príons/genética , Animais , Encéfalo/patologia , Coinfecção , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Doenças Priônicas/metabolismo , Doenças Priônicas/transmissão , Príons/metabolismo , Especificidade da Espécie
20.
Brain Pathol ; 28(6): 999-1011, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29505163

RESUMO

Prions typically spread into the central nervous system (CNS), likely via peripheral nerves. Yet prion conformers differ in their capacity to penetrate the CNS; certain fibrillar prions replicate persistently in lymphoid tissues with no CNS entry, leading to chronic silent carriers. Subclinical carriers of variant Creutzfeldt-Jakob (vCJD) prions in the United Kingdom have been estimated at 1:2000, and vCJD prions have been transmitted through blood transfusion, however, the circulating prion conformers that neuroinvade remain unclear. Here we investigate how prion conformation impacts brain entry of transfused prions by challenging mice intravenously to subfibrillar and fibrillar strains. We show that most strains infiltrated the brain and caused terminal disease, however, the fibrillar prions showed reduced CNS entry in a strain-dependent manner. Strikingly, the highly fibrillar mCWD prion strain replicated in the spleen and emerged in the brain as a novel strain, indicating that a new neuroinvasive prion had been generated from a previously non-neuroinvasive strain. The new strain showed altered plaque morphology, brain regions targeted and biochemical properties and these properties were maintained upon intracerebral passage. Intracerebral passage of prion-infected spleen re-created the new strain. Splenic prions resembled the new strain biochemically and intracerebral passage of prion-infected spleen re-created the new strain, collectively suggesting splenic prion replication as a potential source. Taken together, these results indicate that intravenous exposure to prion-contaminated blood or blood products may generate novel neuroinvasive prion conformers and disease phenotypes, potentially arising from prion replication in non-neural tissues or from conformer selection.


Assuntos
Transfusão de Sangue , Doenças Priônicas/transmissão , Príons/química , Príons/metabolismo , Reação Transfusional/etiologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Príons/sangue , Conformação Proteica , Baço/metabolismo , Baço/patologia , Doença de Emaciação Crônica/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA