Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(12): 7492-505, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25666615

RESUMO

Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.


Assuntos
Glicoproteínas de Membrana/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Bases , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Espectroscopia de Ressonância Magnética , Complexo de Endopeptidases do Proteassoma/genética , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido
2.
EMBO J ; 33(21): 2473-91, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25216678

RESUMO

Mutations in the Park2 gene, encoding the E3 ubiquitin-ligase parkin, are responsible for a familial form of Parkinson's disease (PD). Parkin-mediated ubiquitination is critical for the efficient elimination of depolarized dysfunctional mitochondria by autophagy (mitophagy). As damaged mitochondria are a major source of toxic reactive oxygen species within the cell, this pathway is believed to be highly relevant to the pathogenesis of PD. Little is known about how parkin-mediated ubiquitination is regulated during mitophagy or about the nature of the ubiquitin conjugates involved. We report here that USP8/UBPY, a deubiquitinating enzyme not previously implicated in mitochondrial quality control, is critical for parkin-mediated mitophagy. USP8 preferentially removes non-canonical K6-linked ubiquitin chains from parkin, a process required for the efficient recruitment of parkin to depolarized mitochondria and for their subsequent elimination by mitophagy. This work uncovers a novel role for USP8-mediated deubiquitination of K6-linked ubiquitin conjugates from parkin in mitochondrial quality control.


Assuntos
Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética
3.
Peptides ; 34(2): 360-72, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22386651

RESUMO

Breathing and the activity of its generator (the pre-Bötzinger complex; pre-BötC) are highly regulated functions. Among neuromodulators of breathing, somatostatin (SST) is unique: it is synthesized by a subset of glutamatergic pre-BötC neurons, but acts as an inhibitory neuromodulator. Moreover, SST regulates breathing both in normoxic and in hypoxic conditions. Although it has been implicated in the neuromodulation of breathing, neither the locus of SST modulation, nor the receptor subtypes involved have been identified. In this study, we aimed to fill in these blanks by characterizing the SST-induced regulation of inspiratory rhythm generation in vitro and in vivo. We found that both endogenous and exogenous SST depress all preBötC-generated rhythms. While SST abolishes sighs, it also decreases the frequency and increases the regularity of eupnea and gasping. Pharmacological experiments showed that SST modulates inspiratory rhythm generation by activating SST receptor type-2, whose mRNA is abundantly expressed in the pre-Bötzinger complex. In vivo, blockade of SST receptor type-2 reduces gasping amplitude and consequently, it precludes auto-resuscitation after asphyxia. Based on our findings, we suggest that SST functions as an inhibitory neuromodulator released by excitatory respiratory neurons when they become overactivated in order to stabilize breathing rhythmicity in normoxic and hypoxic conditions.


Assuntos
Asfixia/fisiopatologia , Inalação/efeitos dos fármacos , Neurotransmissores/farmacologia , Centro Respiratório/efeitos dos fármacos , Somatostatina/farmacologia , Animais , Asfixia/metabolismo , Asfixia/mortalidade , Fenômenos Eletrofisiológicos , Hipóxia/metabolismo , Hipóxia/mortalidade , Hipóxia/fisiopatologia , Inalação/fisiologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Periodicidade , Pletismografia , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/genética , Centro Respiratório/fisiologia , Somatostatina/fisiologia , Taxa de Sobrevida , Regulação para Cima
4.
EMBO Rep ; 13(4): 378-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22354088

RESUMO

Mutations in phosphatase and tensin homologue-induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD-linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA-mediated interference (RNAi)-based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin-associated rhomboid-like protease (PARL), m-AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1­Parkin pathway.


Assuntos
Metaloendopeptidases/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Autofagia/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Endopeptidase Clp/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Peso Molecular , Fragmentos de Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Peptidase de Processamento Mitocondrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA