Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(17): eadf5122, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126561

RESUMO

In marine systems, the availability of inorganic phosphate can limit primary production leading to bacterial and phytoplankton utilization of the plethora of organic forms available. Among these are phospholipids that form the lipid bilayer of all cells as well as released extracellular vesicles. However, information on phospholipid degradation is almost nonexistent despite their relevance for biogeochemical cycling. Here, we identify complete catabolic pathways for the degradation of the common phospholipid headgroups phosphocholine (PC) and phosphorylethanolamine (PE) in marine bacteria. Using Phaeobacter sp. MED193 as a model, we provide genetic and biochemical evidence that extracellular hydrolysis of phospholipids liberates the nitrogen-containing substrates ethanolamine and choline. Transporters for ethanolamine (EtoX) and choline (BetT) are ubiquitous and highly expressed in the global ocean throughout the water column, highlighting the importance of phospholipid and especially PE catabolism in situ. Thus, catabolic activation of the ethanolamine and choline degradation pathways, subsequent to phospholipid metabolism, specifically links, and hence unites, the phosphorus, nitrogen, and carbon cycles.


Assuntos
Etanolaminas , Fosfolipídeos , Fosfolipídeos/metabolismo , Colina/metabolismo , Etanolamina , Bactérias/metabolismo , Nitrogênio
2.
ISME J ; 17(4): 579-587, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36707613

RESUMO

Dimethylsulfoniopropionate (DMSP) is a ubiquitous organosulfur compound in marine environments with important functions in both microorganisms and global biogeochemical carbon and sulfur cycling. The SAR11 clade and marine Roseobacter group (MRG) represent two major groups of heterotrophic bacteria in Earth's surface oceans, which can accumulate DMSP to high millimolar intracellular concentrations. However, few studies have investigated how SAR11 and MRG bacteria import DMSP. Here, through comparative genomics analyses, genetic manipulations, and biochemical analyses, we identified an ABC (ATP-binding cassette)-type DMSP-specific transporter, DmpXWV, in Ruegeria pomeroyi DSS-3, a model strain of the MRG. Mutagenesis suggested that DmpXWV is a key transporter responsible for DMSP uptake in strain DSS-3. DmpX, the substrate binding protein of DmpXWV, had high specificity and binding affinity towards DMSP. Furthermore, the DmpX DMSP-binding mechanism was elucidated from structural analysis. DmpX proteins are prevalent in the numerous cosmopolitan marine bacteria outside the SAR11 clade and the MRG, and dmpX transcription was consistently high across Earth's entire global ocean. Therefore, DmpXWV likely enables pelagic marine bacteria to efficiently import DMSP from seawater. This study offers a new understanding of DMSP transport into marine bacteria and provides novel insights into the environmental adaption of marine bacteria.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Compostos de Sulfônio , Transportadores de Cassetes de Ligação de ATP/genética , Água do Mar/microbiologia , Oceanos e Mares , Compostos de Sulfônio/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082153

RESUMO

The regeneration of bioavailable phosphate from immobilized organophosphorus represents a key process in the global phosphorus cycle and is facilitated by enzymes known as phosphatases. Most bacteria possess at least one of three phosphatases with broad substrate specificity, known as PhoA, PhoX, and PhoD, whose activity is optimal under alkaline conditions. The production and activity of these phosphatases is repressed by phosphate availability. Therefore, they are only fully functional when bacteria experience phosphorus-limiting growth conditions. Here, we reveal a previously overlooked phosphate-insensitive phosphatase, PafA, prevalent in Bacteroidetes, which is highly abundant in nature and represents a major route for the regeneration of environmental phosphate. Using the enzyme from Flavobacterium johnsoniae, we show that PafA is highly active toward phosphomonoesters, is fully functional in the presence of excess phosphate, and is essential for growth on phosphorylated carbohydrates as a sole carbon source. These distinct properties of PafA may expand the metabolic niche of Bacteroidetes by enabling the utilization of abundant organophosphorus substrates as C and P sources, providing a competitive advantage when inhabiting zones of high microbial activity and nutrient demand. PafA, which is constitutively synthesized by soil and marine flavobacteria, rapidly remineralizes phosphomonoesters releasing bioavailable phosphate that can be acquired by neighboring cells. The pafA gene is highly diverse in plant rhizospheres and is abundant in the global ocean, where it is expressed independently of phosphate availability. PafA therefore represents an important enzyme in the context of global biogeochemical cycling and has potential applications in sustainable agriculture.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Bacteroidetes/metabolismo , Biodiversidade , Flavobacterium/metabolismo
4.
Nat Commun ; 12(1): 1857, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767153

RESUMO

How oligotrophic marine cyanobacteria position themselves in the water column is currently unknown. The current paradigm is that these organisms avoid sinking due to their reduced size and passive drift within currents. Here, we show that one in four picocyanobacteria encode a type IV pilus which allows these organisms to increase drag and remain suspended at optimal positions in the water column, as well as evade predation by grazers. The evolution of this sophisticated floatation mechanism in these purely planktonic streamlined microorganisms has important implications for our current understanding of microbial distribution in the oceans and predator-prey interactions which ultimately will need incorporating into future models of marine carbon flux dynamics.


Assuntos
Fímbrias Bacterianas/fisiologia , Plâncton/fisiologia , Prochlorococcus/fisiologia , Synechococcus/fisiologia , Ecossistema , Fímbrias Bacterianas/classificação , Oceanos e Mares , Suspensões
5.
Environ Microbiol ; 23(9): 5069-5086, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33684254

RESUMO

The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.


Assuntos
Burkholderia cenocepacia , Burkholderia cenocepacia/genética , Cromatografia Líquida , Humanos , Fósforo , Proteômica , Espectrometria de Massas em Tandem
6.
ISME J ; 15(8): 2440-2453, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33750904

RESUMO

Marine roseobacter group bacteria are numerically abundant and ecologically important players in ocean ecosystems. These bacteria are capable of modifying their membrane lipid composition in response to environmental change. Remarkably, a variety of lipids are produced in these bacteria, including phosphorus-containing glycerophospholipids and several amino acid-containing aminolipids such as ornithine lipids and glutamine lipids. Here, we present the identification and characterization of a novel sulfur-containing aminolipid (SAL) in roseobacters. Using high resolution accurate mass spectrometry, a SAL was found in the lipid extract of Ruegeria pomeroyi DSS-3 and Phaeobacter inhibens DSM 17395. Using comparative genomics, transposon mutagenesis and targeted gene knockout, we identified a gene encoding a putative lyso-lipid acyltransferase, designated salA, which is essential for the biosynthesis of this SAL. Multiple sequence analysis and structural modeling suggest that SalA is a novel member of the lysophosphatidic acid acyltransferase (LPAAT) family, the prototype of which is the PlsC acyltransferase responsible for the biosynthesis of the phospholipid phosphatidic acid. SAL appears to play a key role in biofilm formation in roseobacters. salA is widely distributed in Tara Oceans metagenomes and actively expressed in Tara Oceans metatranscriptomes. Our results raise the importance of sulfur-containing membrane aminolipids in marine bacteria.


Assuntos
Roseobacter , Ecossistema , Rhodobacteraceae , Roseobacter/genética , Enxofre
7.
Curr Biol ; 31(5): 978-989.e4, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33373640

RESUMO

Diatoms are a diverse and globally important phytoplankton group, responsible for an estimated 20% of carbon fixation on Earth. They frequently form spatially extensive phytoplankton blooms, responding rapidly to increased availability of nutrients, including phosphorus (P) and nitrogen (N). Although it is well established that diatoms are common first responders to nutrient influxes in aquatic ecosystems, little is known of the sensory mechanisms that they employ for nutrient perception. Here, we show that P-limited diatoms use a Ca2+-dependent signaling pathway, not previously described in eukaryotes, to sense and respond to the critical macronutrient P. We demonstrate that P-Ca2+ signaling is conserved between a representative pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom. Moreover, this pathway is ecologically relevant, being sensitive to sub-micromolar concentrations of inorganic phosphate and a range of environmentally abundant P forms. Notably, we show that diatom recovery from P limitation requires rapid and substantial increases in N assimilation and demonstrate that this process is dependent on P-Ca2+ signaling. P-Ca2+ signaling thus governs the capacity of diatoms to rapidly sense and respond to P resupply, mediating fundamental cross-talk between the vital nutrients P and N and maximizing diatom resource competition in regions of pulsed nutrient supply.


Assuntos
Cálcio/metabolismo , Diatomáceas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Transdução de Sinais , Organismos Aquáticos/metabolismo , Ecossistema , Fitoplâncton/metabolismo
8.
Microb Biotechnol ; 14(1): 291-306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33280260

RESUMO

Filamentous members of the phylum Actinobacteria are a remarkable source of natural products with pharmaceutical potential. The discovery of novel molecules from these organisms is, however, hindered because most of the biosynthetic gene clusters (BGCs) encoding these secondary metabolites are cryptic or silent and are referred to as orphan BGCs. While co-culture has proven to be a promising approach to unlock the biosynthetic potential of many microorganisms by activating the expression of these orphan BGCs, it still remains an underexplored technique. The marine actinobacterium Salinispora tropica, for instance, produces valuable compounds such as the anti-cancer molecule salinosporamide but half of its putative BGCs are still orphan. Although previous studies have used marine heterotrophs to induce orphan BGCs in Salinispora, its co-culture with marine phototrophs has yet to be investigated. Following the observation of an antimicrobial activity against a range of phytoplankton by S. tropica, we here report that the photosynthate released by photosynthetic primary producers influences its biosynthetic capacities with production of cryptic molecules and the activation of orphan BGCs. Our work, using an approach combining metabolomics and proteomics, pioneers the use of phototrophs as a promising strategy to accelerate the discovery of novel natural products from marine actinobacteria.


Assuntos
Actinobacteria , Micromonosporaceae , Actinobacteria/genética , Micromonosporaceae/genética , Família Multigênica , Fitoplâncton
9.
Environ Microbiol ; 22(4): 1356-1369, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32079039

RESUMO

Pristine marine environments are highly oligotrophic ecosystems populated by well-established specialized microbial communities. Nevertheless, during oil spills, low-abundant hydrocarbonoclastic bacteria bloom and rapidly prevail over the marine microbiota. The genus Alcanivorax is one of the most abundant and well-studied organisms for oil degradation. While highly successful under polluted conditions due to its specialized oil-degrading metabolism, it is unknown how they persist in these environments during pristine conditions. Here, we show that part of the Alcanivorax genus, as well as oils, has an enormous potential for biodegrading aliphatic polyesters thanks to a unique and abundantly secreted alpha/beta hydrolase. The heterologous overexpression of this esterase proved a remarkable ability to hydrolyse both natural and synthetic polyesters. Our findings contribute to (i) better understand the ecology of Alcanivorax in its natural environment, where natural polyesters such as polyhydroxyalkanoates (PHA) are produced by a large fraction of the community and, hence, an accessible source of carbon and energy used by the organism in order to persist, (ii) highlight the potential of Alcanivorax to clear marine environments from polyester materials of anthropogenic origin as well as oils, and (iii) the discovery of a new versatile esterase with a high biotechnological potential.


Assuntos
Alcanivoraceae/enzimologia , Biodegradação Ambiental , Óleos/metabolismo , Alcanivoraceae/classificação , Alcanivoraceae/metabolismo , Biotecnologia , Ecossistema , Poluição por Petróleo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo
10.
Environ Microbiol ; 21(6): 2112-2128, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884081

RESUMO

Bacteriophages infecting Escherichia coli (coliphages) have been used as a proxy for faecal matter and water quality from a variety of environments. However, the diversity of coliphages that is present in seawater remains largely unknown, with previous studies largely focusing on morphological diversity. Here, we isolated and characterized coliphages from three coastal locations in the United Kingdom and Poland. Comparative genomics and phylogenetic analysis of phage isolates facilitated the identification of putative new species within the genera Rb69virus and T5virus and a putative new genus within the subfamily Tunavirinae. Furthermore, genomic and proteomic analysis combined with host range analysis allowed the identification of a putative tail fibre that is likely responsible for the observed differences in host range of phages vB_Eco_mar003J3 and vB_Eco_mar004NP2.


Assuntos
Colífagos/genética , Água do Mar/virologia , Colífagos/classificação , Colífagos/isolamento & purificação , Colífagos/fisiologia , Escherichia coli/genética , Escherichia coli/virologia , Genoma Viral , Genômica , Especificidade de Hospedeiro , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Filogenia , Polônia , Proteômica , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia , Reino Unido
11.
Environ Microbiol ; 20(2): 785-799, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194907

RESUMO

Marine phototroph and heterotroph interactions are vital in maintaining the nutrient balance in the oceans as essential nutrients need to be rapidly cycled before sinking to aphotic layers. The aim of this study was to highlight the molecular mechanisms that drive these interactions. For this, we generated a detailed exoproteomic time-course analysis of a 100-day co-culture between the model marine picocyanobacterium Synechococcus sp. WH7803 and the Roseobacter strain Ruegeria pomeroyi DSS-3, both in nutrient-enriched and natural oligotrophic seawater. The proteomic data showed a transition between the initial growth phase and stable-state phase that, in the case of the heterotroph, was caused by a switch in motility attributed to organic matter availability. The phototroph adapted to seawater oligotrophy by reducing its selective leakiness, increasing the acquisition of essential nutrients and secreting conserved proteins of unknown function. We also report a surprisingly high abundance of extracellular superoxide dismutase produced by Synechococcus and a dynamic secretion of potential hydrolytic enzyme candidates used by the heterotroph to cleave organic groups and hydrolase polymeric organic matter produced by the cyanobacterium. The time course dataset we present here will become a reference for understanding the molecular processes underpinning marine phototroph-heterotroph interactions.


Assuntos
Processos Heterotróficos/fisiologia , Interações Microbianas/fisiologia , Processos Fototróficos/fisiologia , Roseobacter/metabolismo , Synechococcus/metabolismo , Técnicas de Cocultura , Oceanos e Mares , Proteômica , Água do Mar/microbiologia , Superóxido Dismutase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA