Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Sci Signal ; 17(840): eadn8376, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861613

RESUMO

Uveal melanoma (UM) is the deadliest form of eye cancer in adults. Inactivating mutations and/or loss of expression of the gene encoding BRCA1-associated protein 1 (BAP1) in UM tumors are associated with an increased risk of metastasis. To investigate the mechanisms underlying this risk, we explored the functional consequences of BAP1 deficiency. UM cell lines expressing mutant BAP1 grew more slowly than those expressing wild-type BAP1 in culture and in vivo. The ability of BAP1 reconstitution to restore cell proliferation in BAP1-deficient cells required its deubiquitylase activity. Proteomic analysis showed that BAP1-deficient cells had decreased phosphorylation of ribosomal S6 and its upstream regulator, p70S6K1, compared with both wild-type and BAP1 reconstituted cells. In turn, expression of p70S6K1 increased S6 phosphorylation and proliferation of BAP1-deficient UM cells. Consistent with these findings, BAP1 mutant primary UM tumors expressed lower amounts of p70S6K1 target genes, and S6 phosphorylation was decreased in BAP1 mutant patient-derived xenografts (PDXs), which grew more slowly than wild-type PDXs in the liver (the main metastatic site of UM) in mice. BAP1-deficient UM cells were also more resistant to amino acid starvation, which was associated with diminished phosphorylation of S6. These studies demonstrate that BAP1 deficiency slows the proliferation of UM cells through regulation of S6 phosphorylation. These characteristics may be associated with metastasis by ensuring survival during amino acid starvation.


Assuntos
Proliferação de Células , Melanoma , Transdução de Sinais , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Neoplasias Uveais , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Mutação , Fosforilação , Proteína S6 Ribossômica/metabolismo , Proteína S6 Ribossômica/genética , Estresse Fisiológico , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Feminino
2.
Cancer Cell ; 42(7): 1147-1151, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38906154

RESUMO

Clinical practice and clinical research heavily rely on primary tumors, circulating tumor DNA, and/or overt metastases as sources of material for predicting or investigating breast cancer metastatic relapses. However, these approaches do not consider emerging fundamentals in the biology of metastatic dormancy and relapse. Conversely, the field of metastatic dormancy often discounts key clinical factors influencing relapse dynamics (e.g., patient's age and overall health condition). Here, we delineate these disparities into four gaps and propose a framework to bridge them.


Assuntos
Neoplasias da Mama , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Metástase Neoplásica , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/genética
3.
Res Sq ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38645169

RESUMO

Breast cancer is the second most common cancer globally. Most deaths from breast cancer are due to metastatic disease which often follows long periods of clinical dormancy1. Understanding the mechanisms that disrupt the quiescence of dormant disseminated cancer cells (DCC) is crucial for addressing metastatic progression. Infection with respiratory viruses (e.g. influenza or SARS-CoV-2) is common and triggers an inflammatory response locally and systemically2,3. Here we show that influenza virus infection leads to loss of the pro-dormancy mesenchymal phenotype in breast DCC in the lung, causing DCC proliferation within days of infection, and a greater than 100-fold expansion of carcinoma cells into metastatic lesions within two weeks. Such DCC phenotypic change and expansion is interleukin-6 (IL-6)-dependent. We further show that CD4 T cells are required for the maintenance of pulmonary metastatic burden post-influenza virus infection, in part through attenuation of CD8 cell responses in the lungs. Single-cell RNA-seq analyses reveal DCC-dependent impairment of T-cell activation in the lungs of infected mice. SARS-CoV-2 infected mice also showed increased breast DCC expansion in lungs post-infection. Expanding our findings to human observational data, we observed that cancer survivors contracting a SARS-CoV-2 infection have substantially increased risks of lung metastatic progression and cancer-related death compared to cancer survivors who did not. These discoveries underscore the significant impact of respiratory viral infections on the resurgence of metastatic cancer, offering novel insights into the interconnection between infectious diseases and cancer metastasis.

4.
Cancer Cell ; 42(1): 13-15, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194913

RESUMO

Rare disseminated tumor cells (DTCs) can persist after treatment in patients for years, and the immune system does not eliminate them. Goddard et al. propose that immune evasion by rare dormant DTCs is due to an improbability of contact imposed by large distances separating effector T cells and DTCs.


Assuntos
Evasão da Resposta Imune , Neoplasias , Humanos
6.
Clin Cancer Res ; 29(24): 5155-5172, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37982738

RESUMO

PURPOSE: The integrated stress response (ISR) kinase PERK serves as a survival factor for both proliferative and dormant cancer cells. We aim to validate PERK inhibition as a new strategy to specifically eliminate solitary disseminated cancer cells (DCC) in secondary sites that eventually reawake and originate metastasis. EXPERIMENTAL DESIGN: A novel clinical-grade PERK inhibitor (HC4) was tested in mouse syngeneic and PDX models that present quiescent/dormant DCCs or growth-arrested cancer cells in micro-metastatic lesions that upregulate ISR. RESULTS: HC4 significantly blocks metastasis, by killing quiescent/slow-cycling ISRhigh, but not proliferative ISRlow DCCs. HC4 blocked expansion of established micro-metastasis that contained ISRhigh slow-cycling cells. Single-cell gene expression profiling and imaging revealed that a significant proportion of solitary DCCs in lungs were indeed dormant and displayed an unresolved ER stress as revealed by high expression of a PERK-regulated signature. In human breast cancer metastasis biopsies, GADD34 expression (PERK-regulated gene) and quiescence were positively correlated. HC4 effectively eradicated dormant bone marrow DCCs, which usually persist after rounds of therapies. Importantly, treatment with CDK4/6 inhibitors (to force a quiescent state) followed by HC4 further reduced metastatic burden. In HNSCC and HER2+ cancers HC4 caused cell death in dormant DCCs. In HER2+ tumors, PERK inhibition caused killing by reducing HER2 activity because of sub-optimal HER2 trafficking and phosphorylation in response to EGF. CONCLUSIONS: Our data identify PERK as a unique vulnerability in quiescent or slow-cycling ISRhigh DCCs. The use of PERK inhibitors may allow targeting of pre-existing or therapy-induced growth arrested "persister" cells that escape anti-proliferative therapies.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Ciclo Celular , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Morte Celular , eIF-2 Quinase/genética
7.
Cell Rep ; 42(6): 112560, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37267946

RESUMO

Disseminated cancer cells (DCCs) in secondary organs can remain dormant for years to decades before reactivating into overt metastasis. Microenvironmental signals leading to cancer cell chromatin remodeling and transcriptional reprogramming appear to control onset and escape from dormancy. Here, we reveal that the therapeutic combination of the DNA methylation inhibitor 5-azacytidine (AZA) and the retinoic acid receptor ligands all-trans retinoic acid (atRA) or AM80, an RARα-specific agonist, promotes stable dormancy in cancer cells. Treatment of head and neck squamous cell carcinoma (HNSCC) or breast cancer cells with AZA+atRA induces a SMAD2/3/4-dependent transcriptional program that restores transforming growth factor ß (TGF-ß)-signaling and anti-proliferative function. Significantly, either combination, AZA+atRA or AZA+AM80, strongly suppresses HNSCC lung metastasis formation by inducing and maintaining solitary DCCs in a SMAD4+/NR2F1+ non-proliferative state. Notably, SMAD4 knockdown is sufficient to drive resistance to AZA+atRA-induced dormancy. We conclude that therapeutic doses of AZA and RAR agonists may induce and/or maintain dormancy and significantly limit metastasis development.


Assuntos
Neoplasias da Mama , Transdução de Sinais , Proteína Smad4 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Tretinoína , Humanos , Azacitidina/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Tretinoína/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Cold Spring Harb Perspect Med ; 13(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037598

RESUMO

The pattern of delayed recurrence in a subset of breast cancer patients has long been explained by a model that incorporates a variable period of cellular or tumor mass dormancy prior to disease relapse. In this review, we critically evaluate existing data to develop a framework for inferring the existence of dormancy in clinical contexts of breast cancer. We integrate these clinical data with rapidly evolving mechanistic insights into breast cancer dormancy derived from a broad array of genetically engineered mouse models as well as experimental models of metastasis. Finally, we propose actionable interventions and discuss ongoing clinical trials that translate the wealth of knowledge gained in the laboratory to the long-term clinical management of patients at a high risk of developing recurrence.


Assuntos
Neoplasias da Mama , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia
9.
Mol Cancer Ther ; 22(1): 63-74, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36223548

RESUMO

Uveal melanoma (UM) is the most common intraocular tumor in adults, and up to 50% of patients develop metastatic disease, which remains uncurable. Because patients with metastatic UM have an average survival of less than 1 year after diagnosis, there is an urgent need to develop new treatment strategies. Although activating mutations in Gαq or Gα11 proteins are major drivers of pathogenesis, the therapeutic intervention of downstream Gαq/11 targets has been unsuccessful in treating UM, possibly due to alternative signaling pathways and/or resistance mechanisms. Activation of the insulin-like growth factor 1 (IGF1) signaling pathway promotes cell growth, metastasis, and drug resistance in many types of cancers, including UM, where expression of the IGF1 receptor (IGF1R) correlates with a poor prognosis. In this article, we show that direct inhibition of Gαq/11 by the cyclic depsipeptide YM-254890 in combination with inhibition of IGF1R by linsitinib cooperatively inhibits downstream signaling and proliferation of UM cells. We further demonstrate that a 2-week combination treatment of 0.3 to 0.4 mg/kg of YM-254890 administered by intraperitoneal injection and 25 to 40 mg/kg linsitinib administered by oral gavage effectively inhibits the growth of metastatic UM tumors in immunodeficient NOD scid gamma (NSG) mice and identifies the IGF1 pathway as a potential resistance mechanism in response to Gαq/11 inhibition in UM. These data suggest that the combination of Gαq/11 and IGF1R inhibition provides a promising therapeutic strategy to treat metastatic UM.


Assuntos
Melanoma , Neoplasias Uveais , Camundongos , Animais , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Transdução de Sinais , Neoplasias Uveais/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral
10.
Sci Adv ; 8(48): eabo0876, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459552

RESUMO

MacroH2A variants have been linked to inhibition of metastasis through incompletely understood mechanisms. Here, we reveal that solitary dormant disseminated cancer cells (DCCs) display increased levels of macroH2A variants in head and neck squamous cell carcinoma PDX in vivo models and patient samples compared to proliferating primary or metastatic lesions. We demonstrate that dormancy-inducing transforming growth factor-ß2 and p38α/ß pathways up-regulate macroH2A expression and that macroH2A variant overexpression is sufficient to induce DCC dormancy and suppress metastasis in vivo. Notably, inducible expression of the macroH2A2 variant in vivo suppresses metastasis via a reversible growth arrest of DCCs. This state does not require the dormancy-regulating transcription factors DEC2 and NR2F1; instead, transcriptomic analysis reveals that macroH2A2 overexpression inhibits cell cycle and oncogenic signaling programs, while up-regulating dormancy and senescence-associated inflammatory cytokines. We conclude that the macroH2A2-enforced dormant phenotype results from tapping into transcriptional programs of both quiescence and senescence to limit metastatic outgrowth.


Assuntos
Neoplasias de Cabeça e Pescoço , Histonas , Humanos , Carcinogênese , Divisão Celular , Ciclo Celular , Neoplasias de Cabeça e Pescoço/genética
11.
Nat Cancer ; 3(10): 1165-1180, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050483

RESUMO

Increasing evidence shows that cancer cells can disseminate from early evolved primary lesions much earlier than the classical metastasis models predicted. Here, we reveal at a single-cell resolution that mesenchymal-like (M-like) and pluripotency-like programs coordinate dissemination and a long-lived dormancy program of early disseminated cancer cells (DCCs). The transcription factor ZFP281 induces a permissive state for heterogeneous M-like transcriptional programs, which associate with a dormancy signature and phenotype in vivo. Downregulation of ZFP281 leads to a loss of an invasive, M-like dormancy phenotype and a switch to lung metastatic outgrowth. We also show that FGF2 and TWIST1 induce ZFP281 expression to induce the M-like state, which is linked to CDH1 downregulation and upregulation of CDH11. We found that ZFP281 not only controls the early dissemination of cancer cells but also locks early DCCs in a dormant state by preventing the acquisition of an epithelial-like proliferative program and consequent metastases outgrowth.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias , Humanos , Fatores de Transcrição/genética , Pulmão
12.
Cancer Cell ; 40(8): 787-791, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35944497

RESUMO

Metastasis, the major cause of cancer death, represents one of the major challenges in oncology. Scientists are still trying to understand the biological basis underlying the dissemination and outgrowth of tumor cells, why these cells can remain dormant for years, how they become resistant to the immune system or cytotoxic effects of systemic therapy, and how they interact with their new microenvironment. We asked experts to discuss some of the unknowns, advances, and areas of opportunity related to cancer metastasis.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Sistema Imunitário/patologia , Metástase Neoplásica/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia
13.
Nature ; 606(7913): 396-405, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650435

RESUMO

Disseminated cancer cells from primary tumours can seed in distal tissues, but may take several years to form overt metastases, a phenomenon that is termed tumour dormancy. Despite its importance in metastasis and residual disease, few studies have been able to successfully characterize dormancy within melanoma. Here we show that the aged lung microenvironment facilitates a permissive niche for efficient outgrowth of dormant disseminated cancer cells-in contrast to the aged skin, in which age-related changes suppress melanoma growth but drive dissemination. These microenvironmental complexities can be explained by the phenotype switching model, which argues that melanoma cells switch between a proliferative cell state and a slower-cycling, invasive state1-3. It was previously shown that dermal fibroblasts promote phenotype switching in melanoma during ageing4-8. We now identify WNT5A as an activator of dormancy in melanoma disseminated cancer cells within the lung, which initially enables the efficient dissemination and seeding of melanoma cells in metastatic niches. Age-induced reprogramming of lung fibroblasts increases their secretion of the soluble WNT antagonist sFRP1, which inhibits WNT5A in melanoma cells and thereby enables efficient metastatic outgrowth. We also identify the tyrosine kinase receptors AXL and MER as promoting a dormancy-to-reactivation axis within melanoma cells. Overall, we find that age-induced changes in distal metastatic microenvironments promote the efficient reactivation of dormant melanoma cells in the lung.


Assuntos
Envelhecimento , Pulmão , Melanoma , Metástase Neoplásica , Células Estromais , Microambiente Tumoral , Idoso , Envelhecimento/patologia , Fibroblastos/patologia , Humanos , Pulmão/patologia , Melanoma/patologia , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Neoplasia Residual , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Pele/patologia , Células Estromais/patologia , Proteína Wnt-5a , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
14.
Cell Rep ; 39(1): 110637, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385731

RESUMO

ARID2 is the most recurrently mutated SWI/SNF complex member in melanoma; however, its tumor-suppressive mechanisms in the context of the chromatin landscape remain to be elucidated. Here, we model ARID2 deficiency in melanoma cells, which results in defective PBAF complex assembly with a concomitant genomic redistribution of the BAF complex. Upon ARID2 depletion, a subset of PBAF and shared BAF-PBAF-occupied regions displays diminished chromatin accessibility and associated gene expression, while BAF-occupied enhancers gain chromatin accessibility and expression of genes linked to the process of invasion. As a function of altered accessibility, the genomic occupancy of melanoma-relevant transcription factors is affected and significantly correlates with the observed transcriptional changes. We further demonstrate that ARID2-deficient cells acquire the ability to colonize distal organs in multiple animal models. Taken together, our results reveal a role for ARID2 in mediating BAF and PBAF subcomplex chromatin dynamics with consequences for melanoma metastasis.


Assuntos
Proteínas Cromossômicas não Histona , Melanoma , Fatores de Transcrição , Animais , Cromatina , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Humanos , Melanoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Nat Cancer ; 3(1): 90-107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121989

RESUMO

Cancer cells disseminate and seed in distant organs, where they can remain dormant for many years before forming clinically detectable metastases. Here we studied how disseminated tumor cells sense and remodel the extracellular matrix (ECM) to sustain dormancy. ECM proteomics revealed that dormant cancer cells assemble a type III collagen-enriched ECM niche. Tumor-derived type III collagen is required to sustain tumor dormancy, as its disruption restores tumor cell proliferation through DDR1-mediated STAT1 signaling. Second-harmonic generation two-photon microscopy further revealed that the dormancy-to-reactivation transition is accompanied by changes in type III collagen architecture and abundance. Analysis of clinical samples revealed that type III collagen levels were increased in tumors from patients with lymph node-negative head and neck squamous cell carcinoma compared to patients who were positive for lymph node colonization. Our data support the idea that the manipulation of these mechanisms could serve as a barrier to metastasis through disseminated tumor cell dormancy induction.


Assuntos
Colágeno Tipo III , Neoplasias de Cabeça e Pescoço , Proliferação de Células , Matriz Extracelular , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço
16.
Nat Commun ; 13(1): 626, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110548

RESUMO

Metastases are initiated by disseminated tumor cells (DTCs) that colonize distant organs. Growing evidence suggests that the microenvironment of the primary tumor primes DTCs for dormant or proliferative fates. However, the manner in which this occurs remains poorly understood. Here, using the Window for High-Resolution Intravital Imaging of the Lung (WHRIL), we study the live lung longitudinally and follow the fate of individual DTCs that spontaneously disseminate from orthotopic breast tumors. We find that spontaneously DTCs have increased levels of retention, increased speed of extravasation, and greater survival after extravasation, compared to experimentally metastasized tumor cells. Detailed analysis reveals that a subset of macrophages within the primary tumor induces a pro-dissemination and pro-dormancy DTC phenotype. Our work provides insight into how specific primary tumor microenvironments prime a subpopulation of cells for expression of proteins associated with dissemination and dormancy.


Assuntos
Microambiente Tumoral/fisiologia , Macrófagos Associados a Tumor/fisiologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Células-Tronco Neoplásicas , Fenótipo
17.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34812843

RESUMO

We describe the discovery of an agonist of the nuclear receptor NR2F1 that specifically activates dormancy programs in malignant cells. The agonist led to a self-regulated increase in NR2F1 mRNA and protein and downstream transcription of a novel dormancy program. This program led to growth arrest of an HNSCC PDX line, human cell lines, and patient-derived organoids in 3D cultures and in vivo. This effect was lost when NR2F1 was knocked out by CRISPR-Cas9. RNA sequencing revealed that agonist treatment induces transcriptional changes associated with inhibition of cell cycle progression and mTOR signaling, metastasis suppression, and induction of a neural crest lineage program. In mice, agonist treatment resulted in inhibition of lung HNSCC metastasis, even after cessation of the treatment, where disseminated tumor cells displayed an NR2F1hi/p27hi/Ki-67lo/p-S6lo phenotype and remained in a dormant single-cell state. Our work provides proof of principle supporting the use of NR2F1 agonists to induce dormancy as a therapeutic strategy to prevent metastasis.


Assuntos
Fator I de Transcrição COUP/agonistas , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Fator I de Transcrição COUP/genética , Fator I de Transcrição COUP/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , RNA-Seq/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Cancer Res ; 81(18): 4673-4675, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34429327

RESUMO

The paradigm of metastasis has been significantly remodeled by the incorporation of cancer dormancy as a mechanism to explain long-term remission intervals followed by relapse. There is overall consensus on the potential impact of better understanding dormancy. Key cancer-cell autonomous and microenvironmental mechanisms might explain this biology and, in turn, the timing of metastasis. However, the approach and feasibility to apply this biology to clinical trials has been controversial. The discussion here provides insight into how these controversies are being resolved by the development of active clinical trials, thus bringing to reality opportunities to target cancer dormancy.


Assuntos
Transformação Celular Neoplásica , Suscetibilidade a Doenças , Neoplasias/etiologia , Neoplasias/metabolismo , Pesquisa Translacional Biomédica , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ensaios Clínicos como Assunto , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Recidiva , Projetos de Pesquisa , Resultado do Tratamento
19.
J Clin Med ; 10(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208521

RESUMO

Prostate cancer has a variable clinical course, ranging from curable local disease to lethal metastatic spread. Eradicating metastatic cells is a unique challenge that is rarely met with the available therapies. Thus, targeting prostate cancer cells in earlier disease states is a crucial window of opportunity. Interestingly, cancer cells migrate from their primary site during pre-cancerous and malignant phases to seed secondary organs. These cells, known as disseminated cancer cells (DCCs), may remain dormant for months or decades before activating to form metastases. Bone marrow, a dormancy-permissive site, is the major organ for housed DCCs and eventual metastases in prostate cancer. The dynamic interplay between DCCs and the primary tumor microenvironment (TME), as well as that between DCCs and the secondary organ niche, controls the conversion between states of dormancy and activation. Here, we discuss recent discoveries that have improved our understanding of dormancy signaling and the role of the TME in modulating the epigenetic reprogramming of DCCs. We offer potential strategies to target DCCs in prostate cancer.

20.
Nature ; 595(7868): 578-584, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34135508

RESUMO

Macrophages have a key role in shaping the tumour microenvironment (TME), tumour immunity and response to immunotherapy, which makes them an important target for cancer treatment1,2. However, modulating macrophages has proved extremely difficult, as we still lack a complete understanding of the molecular and functional diversity of the tumour macrophage compartment. Macrophages arise from two distinct lineages. Tissue-resident macrophages self-renew locally, independent of adult haematopoiesis3-5, whereas short-lived monocyte-derived macrophages arise from adult haematopoietic stem cells, and accumulate mostly in inflamed lesions1. How these macrophage lineages contribute to the TME and cancer progression remains unclear. To explore the diversity of the macrophage compartment in human non-small cell lung carcinoma (NSCLC) lesions, here we performed single-cell RNA sequencing of tumour-associated leukocytes. We identified distinct populations of macrophages that were enriched in human and mouse lung tumours. Using lineage tracing, we discovered that these macrophage populations differ in origin and have a distinct temporal and spatial distribution in the TME. Tissue-resident macrophages accumulate close to tumour cells early during tumour formation to promote epithelial-mesenchymal transition and invasiveness in tumour cells, and they also induce a potent regulatory T cell response that protects tumour cells from adaptive immunity. Depletion of tissue-resident macrophages reduced the numbers and altered the phenotype of regulatory T cells, promoted the accumulation of CD8+ T cells and reduced tumour invasiveness and growth. During tumour growth, tissue-resident macrophages became redistributed at the periphery of the TME, which becomes dominated by monocyte-derived macrophages in both mouse and human NSCLC. This study identifies the contribution of tissue-resident macrophages to early lung cancer and establishes them as a target for the prevention and treatment of early lung cancer lesions.


Assuntos
Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA