Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 16(1): 597, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27776489

RESUMO

BACKGROUND: Lower respiratory tract infection in children is increasingly thought to be polymicrobial in origin. Children with symptoms suggestive of pulmonary tuberculosis (PTB) may have tuberculosis, other respiratory tract infections or co-infection with Mycobacterium tuberculosis and other pathogens. We aimed to identify the presence of potential respiratory pathogens in nasopharyngeal (NP) samples from children with suspected PTB. METHOD: NP samples collected from consecutive children presenting with suspected PTB at Red Cross Children's Hospital (Cape Town, South Africa) were tested by multiplex real-time RT-PCR. Mycobacterial liquid culture and Xpert MTB/RIF was performed on 2 induced sputa obtained from each participant. Children were categorised as definite-TB (culture or qPCR [Xpert MTB/RIF] confirmed), unlikely-TB (improvement of symptoms without TB treatment on follow-up) and unconfirmed-TB (all other children). RESULTS: Amongst 214 children with a median age of 36 months (interquartile range, [IQR] 19-66 months), 34 (16 %) had definite-TB, 86 (40 %) had unconfirmed-TB and 94 (44 %) were classified as unlikely-TB. Moraxella catarrhalis (64 %), Streptococcus pneumoniae (42 %), Haemophilus influenzae spp (29 %) and Staphylococcus aureus (22 %) were the most common bacteria detected in NP samples. Other bacteria detected included Mycoplasma pneumoniae (9 %), Bordetella pertussis (7 %) and Chlamydophila pneumoniae (4 %). The most common viruses detected included metapneumovirus (19 %), rhinovirus (15 %), influenza virus C (9 %), adenovirus (7 %), cytomegalovirus (7 %) and coronavirus O43 (5.6 %). Both bacteria and viruses were detected in 73, 55 and 56 % of the definite, unconfirmed and unlikely-TB groups, respectively. There were no significant differences in the distribution of respiratory microbes between children with and without TB. Using quadratic discriminant analysis, human metapneumovirus, C. pneumoniae, coronavirus 043, influenza virus C virus, rhinovirus and cytomegalovirus best discriminated children with definite-TB from the other groups of children. CONCLUSIONS: A broad range of potential respiratory pathogens was detected in children with suspected TB. There was no clear association between TB categorisation and detection of a specific pathogen. Further work is needed to explore potential pathogen interactions and their role in the pathogenesis of PTB.


Assuntos
Nasofaringe/microbiologia , Infecções Respiratórias/microbiologia , Tuberculose Pulmonar/diagnóstico , Criança , Pré-Escolar , Coinfecção , Feminino , Hospitalização , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex , Nasofaringe/virologia , Infecções Respiratórias/virologia , África do Sul , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia
2.
Extremophiles ; 9(5): 385-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15947864

RESUMO

Continental Antarctic is perceived as a largely pristine environment, although certain localized regions (e.g., parts of the Ross Dependency Dry Valleys) are relatively heavy impacted by human activities. The procedures imposed on Antarctic field parties for the handling and disposal of both solid and liquid wastes are designed to minimise eutrofication and contamination (particularly by human enteric bacteria). However, little consideration has been given to the significance, if any, of less obvious forms of microbial contamination resulting from periodic human activities in Antarctica. The predominant commensal microorganism on human skin, Staphylococcus epidermidis, could be detected by PCR, in Dry Valley mineral soils collected from heavily impacted areas, but could not be detected in Dry Valley mineral soils collected from low impact and pristine areas. Cell viability of this non-enteric human commensal is rapidly lost in Dry Valley mineral soil. However, S. epidermidis can persist for long periods in Dry Valley mineral soil as non-viable cells and/or naked DNA.


Assuntos
Clima Frio , Meio Ambiente , Genoma Bacteriano , Microbiologia do Solo , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação , Regiões Antárticas , Humanos , Pele/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA