Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37235266

RESUMO

The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 290: 122296, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36610211

RESUMO

In this paper, we report a successful synthesis of ZnO nanorods using the microwave-assisted technique, solid-state reaction method was utilized for the preparation of Zn1-xAgxO (x = 0.05, 0.1), Hummer's modified method for graphene oxide (GO) along with the sonication method to prepare GO-based Ag-doped ZnO (Zn1-xAgxO/GO: x  = 0.05, 0.1) nanocomposites. These nanorods and nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy for structural properties, scanning electron microscopy (SEM) along with energy dispersive X-ray (EDX) spectroscopy for morphological analysis, and UV-Vis spectroscopy for optical properties. XRD, FTIR, and Raman measurements substantiated that each sample is well crystallized in the single-phase polycrystalline wurtzite hexagonal structure of ZnO. The average crystallite size is found to be in decreasing order ranges 40 nm to 29 nm, respectively, along with a significant reduction in the optical bandgap. The SEM images showed a clear evidence of nanorods of ZnO, while the EDX spectra verified the presence of Zn, Ag, O, and C elements in the synthesized samples with their nominal percentage. Furthermore, the prepared nanocomposites effectively inhibited the growth ofStaphylococcus aureus and Escherichia coli. In comparison to pure ZnO nanorods, GO-based Ag-doped ZnO nanorods showed improved antibacterial activity against both S. aureus and E. coli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA