Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 520, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783244

RESUMO

BACKGROUND: On 20 September 2022, Uganda declared its fifth Sudan virus disease (SVD) outbreak, culminating in 142 confirmed and 22 probable cases. The reproductive rate (R) of this outbreak was 1.25. We described persons who were exposed to the virus, became infected, and they led to the infection of an unusually high number of cases during the outbreak. METHODS: In this descriptive cross-sectional study, we defined a super-spreader person (SSP) as any person with real-time polymerase chain reaction (RT-PCR) confirmed SVD linked to the infection of ≥ 13 other persons (10-fold the outbreak R). We reviewed illness narratives for SSPs collected through interviews. Whole-genome sequencing was used to support epidemiologic linkages between cases. RESULTS: Two SSPs (Patient A, a 33-year-old male, and Patient B, a 26-year-old male) were identified, and linked to the infection of one probable and 50 confirmed secondary cases. Both SSPs lived in the same parish and were likely infected by a single ill healthcare worker in early October while receiving healthcare. Both sought treatment at multiple health facilities, but neither was ever isolated at an Ebola Treatment Unit (ETU). In total, 18 secondary cases (17 confirmed, one probable), including three deaths (17%), were linked to Patient A; 33 secondary cases (all confirmed), including 14 (42%) deaths, were linked to Patient B. Secondary cases linked to Patient A included family members, neighbours, and contacts at health facilities, including healthcare workers. Those linked to Patient B included healthcare workers, friends, and family members who interacted with him throughout his illness, prayed over him while he was nearing death, or exhumed his body. Intensive community engagement and awareness-building were initiated based on narratives collected about patients A and B; 49 (96%) of the secondary cases were isolated in an ETU, a median of three days after onset. Only nine tertiary cases were linked to the 51 secondary cases. Sequencing suggested plausible direct transmission from the SSPs to 37 of 39 secondary cases with sequence data. CONCLUSION: Extended time in the community while ill, social interactions, cross-district travel for treatment, and religious practices contributed to SVD super-spreading. Intensive community engagement and awareness may have reduced the number of tertiary infections. Intensive follow-up of contacts of case-patients may help reduce the impact of super-spreading events.


Assuntos
Surtos de Doenças , Humanos , Uganda/epidemiologia , Masculino , Estudos Transversais , Adulto , Feminino , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Sequenciamento Completo do Genoma , Ebolavirus/genética , Ebolavirus/isolamento & purificação
2.
Int J Infect Dis ; 145: 107073, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670481

RESUMO

OBJECTIVES: Early isolation and care for Ebola disease patients at Ebola Treatment Units (ETU) curb outbreak spread. We evaluated time to ETU entry and associated factors during the 2022 Sudan virus disease (SVD) outbreak in Uganda. METHODS: We included persons with RT-PCR-confirmed SVD with onset September 20-November 30, 2022. We categorized days from symptom onset to ETU entry ("delays") as short (≤2), moderate (3-5), and long (≥6); the latter two were "delayed isolation." We categorized symptom onset timing as "earlier" or "later," using October 15 as a cut-off. We assessed demographics, symptom onset timing, and awareness of contact status as predictors for delayed isolation. We explored reasons for early vs late isolation using key informant interviews. RESULTS: Among 118 case-patients, 25 (21%) had short, 43 (36%) moderate, and 50 (43%) long delays. Seventy-five (64%) had symptom onset later in the outbreak. Earlier symptom onset increased risk of delayed isolation (crude risk ratio = 1.8, 95% confidence interval (1.2-2.8]). Awareness of contact status and SVD symptoms, and belief that early treatment-seeking was lifesaving facilitated early care-seeking. Patients with long delays reported fear of ETUs and lack of transport as contributors. CONCLUSION: Delayed isolation was common early in the outbreak. Strong contact tracing and community engagement could expedite presentation to ETUs.

3.
BMC Health Serv Res ; 23(1): 441, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143093

RESUMO

BACKGROUND: The COVID-19 pandemic overwhelmed the capacity of health facilities globally, emphasizing the need for readiness to respond to rapid increases in cases. The first wave of COVID-19 in Uganda peaked in late 2020 and demonstrated challenges with facility readiness to manage cases. The second wave began in May 2021. In June 2021, we assessed the readiness of health facilities in Uganda to manage the second wave of COVID-19. METHODS: Referral hospitals managed severe COVID-19 patients, while lower-level health facilities screened, isolated, and managed mild cases. We assessed 17 of 20 referral hospitals in Uganda and 71 of 3,107 lower-level health facilities, selected using multistage sampling. We interviewed health facility heads in person about case management, coordination and communication and reporting, and preparation for the surge of COVID-19 during first and the start of the second waves of COVID-19, inspected COVID-19 treatment units (CTUs) and other service delivery points. We used an observational checklist to evaluate capacity in infection prevention, medicines, personal protective equipment (PPE), and CTU surge capacity. We used the "ReadyScore" criteria to classify readiness levels as > 80% ('ready'), 40-80% ('work to do'), and < 40% ('not ready') and tailored the assessments to the health facility level. Scores for the lower-level health facilities were weighted to approximate representativeness for their health facility type in Uganda. RESULTS: The median (interquartile range (IQR)) readiness scores were: 39% (IQR: 30, 51%) for all health facilities, 63% (IQR: 56, 75%) for referral hospitals, and 32% (IQR: 24, 37%) for lower-level facilities. Of 17 referral facilities, two (12%) were 'ready' and 15 (88%) were in the "work to do" category. Fourteen (82%) had an inadequate supply of medicines, 12 (71%) lacked adequate supply of oxygen, and 11 (65%) lacked space to expand their CTU. Fifty-five (77%) lower-level health facilities were "not ready," and 16 (23%) were in the "work to do" category. Seventy (99%) lower-level health facilities lacked medicines, 65 (92%) lacked PPE, and 53 (73%) lacked an emergency plan for COVID-19. CONCLUSION: Few health facilities were ready to manage the second wave of COVID-19 in Uganda during June 2021. Significant gaps existed for essential medicines, PPE, oxygen, and space to expand CTUs. The Uganda Ministry of Health utilized our findings to set up additional COVID-19 wards in hospitals and deliver medicines and PPE to referral hospitals. Adequate readiness for future waves of COVID-19 requires additional support and action in Uganda.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Humanos , Uganda/epidemiologia , Pandemias , COVID-19/epidemiologia , COVID-19/terapia , Instalações de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA