Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tissue Cell ; 90: 102503, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39137535

RESUMO

BACKGROUND: Bisphenol A (BPA) is a widely used chemical with a harmful effect on animal and human. The neonatal and juvenile period is a highly risky neurodevelopmental period. AIM: This study aimed to determine how male albino rat pups' cerebral cortex was altered by low doses of BPA given to mothers and the role of the oxidative stress. METHODS: Thirty pregnant rats were randomly split into three equal groups, negative control, and positive control: received 1 cc of corn oil once a day through gastric tube and BPA treated: a dose of 200 µg/kg/day (dissolved in 1 cc corn oil). The male rat pups of each group were sacrificed at 1 week, 3 weeks and 6 weeks. The cerebra were then separated from the brain for histological and biochemical studies. RESULTS: Rats administered BPA had raised levels of lipid peroxidation marker (MDA), lower levels of enzymatic antioxidants (SOD and CAT) with decreased body, cerebral weights, and decreased levels of non-enzymatic antioxidant defense (GSH). Histo-pathologically, shrunken pyramidal cells with congested blood vessels appeared. GFAP displayed increased number of positive immune-reactive astrocytes with high statistically significant increase in the area % in BPA treated group when compared to the control groups, on contrary to MBP. Semi-thin and ultra-thin BPA-sections revealed degenerative changes in myelinated axons with tiny nucleus and broken nuclear membranes. Lysosomes, dilated endoplasmic reticulum cisternae with noticeable increase in unmyelinated nerve fibers were also observed. CONCLUSION: The structure of the developing cerebral cortex is negatively impacted by BPA due to oxidative stress.


Assuntos
Compostos Benzidrílicos , Exposição Materna , Estresse Oxidativo , Fenóis , Animais , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Feminino , Masculino , Gravidez , Ratos , Exposição Materna/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Antioxidantes/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia
2.
Sci Rep ; 14(1): 18160, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103403

RESUMO

Diabetes mellitus (DM) is a chronic disorder of glucose metabolism that threatens several organs, including the submandibular (SMG) salivary glands. Antox (ANX) is a strong multivitamin with significant antioxidant benefits. The goal of this study was to demonstrate the beneficial roles of ANX supplementation in combination with insulin in alleviating diabetic SMG changes. For four weeks, 30 rats were divided into equal five groups (n = 6): (1) control group; (2) diabetic group (DM), with DM induced by streptozotocin (STZ) injection (50 mg/kg i.p.); (3) DM + ANX group: ANX was administrated (10 mg/kg/day/once daily/orally); (4) DM + insulin group: insulin was administrated 1U once/day/s.c.; and (5) DM + insulin + ANX group: co-administrated insulin. The addition of ANX to insulin in diabetic rats alleviated hyposalivation and histopathological alterations associated with diabetic rats. Remarkably, combined ANX and insulin exerted significant antioxidant effects, suppressing inflammatory and apoptotic pathways associated with increased salivary advanced glycation end-product (AGE) production and receptor for advanced glycation end-product expression (RAGE) activation in diabetic SMG tissues. Combined ANX and insulin administration in diabetic rats was more effective in alleviating SMG changes (functions and structures) than administration of insulin alone, exerting suppressive effects on AGE production and frustrating RAGE downstream pathways.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Produtos Finais de Glicação Avançada , Insulina , Receptor para Produtos Finais de Glicação Avançada , Glândula Submandibular , Animais , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Glândula Submandibular/efeitos dos fármacos , Ratos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/patologia , Produtos Finais de Glicação Avançada/metabolismo , Insulina/metabolismo , Masculino , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Vitaminas/farmacologia
3.
Tissue Cell ; 86: 102265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37948956

RESUMO

Acetamiprid (ACMP) is a second-generation neonicotinoid that has been extensively used in the last few years. The present study examined the toxic effects of ACMP on the pancreas and glucose homeostasis through the evaluation of histological and biochemical changes and the possible ameliorative role of fenugreek seed extract (FG). Fifty adult albino rats were divided into 5 groups: negative control, positive control, FG-treated, ACMP-treated, and ACMP + FG-treated groups by oral gavage for 12 weeks. The ACMP-treated group highlighted significant elevations in plasma glucose, glycosylated haemoglobin levels (HbA1c), serum amylase, and serum lipase, along with a decrease in plasma insulin levels. In addition, significant increases in tumour necrosis factor- alpha (TNF-α) and malondialdehyde (MDA) were associated with reductions in the levels of interleukin 10 (IL-10), glutathione peroxidase, and catalase. Moreover, glucose-6-phosphatase and glycogen phosphorylase were significantly increased, with a significant reduction in hexokinase and liver glycogen stores. These biochemical changes were associated with histological changes in pancreatic sections stained by haematoxylin and eosin, Masson stain, and Orcein stain. ACMP-treated cells showed a marked reduction in ß- cell immune reactivity to insulin, with pronounced p53, and beclin 1 immune expression. The use of FG with ACMP induced partial protection except for hexokinase and glycogen phosphorylase.


Assuntos
Aminopiridinas , Antioxidantes , Hexoquinase , Trigonella , Ratos , Animais , Antioxidantes/metabolismo , Hexoquinase/metabolismo , Ratos Wistar , Estresse Oxidativo , Pâncreas/metabolismo , Extratos Vegetais/farmacologia , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Insulina/metabolismo , Apoptose , Homeostase , Autofagia , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase/farmacologia , Glucose/metabolismo
4.
J Mol Histol ; 54(4): 283-296, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37365388

RESUMO

Perfluorooctane sulfonate (PFOS) is a man-made fluorinated compound employed in a variety of industrial and civilian applications. Due to its long elimination half-life and promotion of oxidative stress and inflammation, it is one of the most abundant organic contaminants. The present study was designed to determine the cytotoxic effect of PFOS on adult male rat cardiac tissue and to assess the cardioprotective role of the flavonoid quercetin (Que), which possesses antioxidant, anti-inflammatory, and anti-apoptotic properties. Twenty-four adult male Sprague-Dawley rats were randomly divided into four equal groups: Group I (Control). Group II (Que) received Que (75 mg/kg/day for 4 weeks) by oral gavage. Group III (PFOS group): supplemented orally with PFOS (20 mg/kg/day for 4 weeks) and Group IV (PF OS/Que). The rat heart was processed for histological, immunohistochemical, and gene expression studies. The PFOS group showed histological alterations in the myocardium that were partially reversed by the administration of Que. The inflammatory biomarkers (TNF, IL-6, and IL-1), lipid profile, TSH, MDA, and serum cardiac enzymes (LDH and CK-MB) were all altered. These findings collectively suggest that PFOS had adverse effects on the cardiac muscle structure, and these effects were alleviated by quercetin, which is a promising cardioprotective flavonoid.


Assuntos
Antioxidantes , Quercetina , Ratos , Animais , Masculino , Quercetina/farmacologia , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Miocárdio/metabolismo , Alcanossulfonatos/metabolismo , Alcanossulfonatos/farmacologia
5.
Gene ; 712: 143966, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31279711

RESUMO

BACKGROUND: Acute paracetamol (PCM) toxicity is a clinical problem; can result in a serious liver injury that finally may progress to acute liver failure. Curcumin (CUR) is a prevalent natural compound that can maintain prooxidant/antioxidant balance and thus can help in liver protection; also, Silymarin (SL) is a traditional antioxidant herb, used to treat liver disorders through scavenging free radicals. This study aimed to illustrate the histological, biochemical and molecular changes induced by acute PCM overdose on rats' liver to elucidate the effectiveness of CUR compared to SL in alleviating such changes. MATERIALS AND METHODS: Male Wister Albino rats were divided into 6 groups each comprising 23 rats: control group, curcumin (CUR) treated group received (100 mg CUR/ kg), silymarin treated group received (100 mg SL/kg) for 7 successive days. Paracetamol (PCM) exposed group administered a single dose of PCM (200 mg/kg orally on 8th day). PCM + CUR group and PCM + SL group pretreated with CUR and SL respectively for 7 days then received single PCM dose (200 mg/kg) on the 8th day. Blood and liver tissues were collected for biochemical, histopathological and immunohistochemical analyses using anti-p53 antibody. In addition, real time polymerase chain reaction (RT- PCR) was used to measure Bax, bcl2 and Peroxisome proliferator-activated receptor-gamma (PPAR γ) mRNA expression levels. RESULTS: In the paracetamol overdose group, the liver architecture showed necrotic changes, hydropic degeneration, congestion and dilatation of central veins. This hepatocellular damage was confirmed by a significant increase of AST, ALT levels and by an apparent increase in the number of p53 stained cells. PCM toxicity showed significant elevation of total oxidant status (TOS), oxidant status index (OSI) and decreased total antioxidant capacity (TAC) compared to controls (p < 0.001). Gene expression analysis showed that PCM caused an elevation of bcl2 and a reduction of both Bax and PPARγ mRNA expression. The histological alternation in the liver architecture was markedly improved in (PCM + CUR) group compared to (PCM+ SL) group, with an obvious decrease in the number of P53 stained cells. CUR pretreatment inhibited the elevation of TOS and OSI as well as the reduction of TAC caused by PCM toxicity compared to (PCM + SL) group. CONCLUSION: Both SL and CUR pretreatment prevented the toxic effects of PCM, but CUR is more effective than SL in ameliorating acute PCM induced hepatotoxicity.


Assuntos
Acetaminofen/toxicidade , Curcumina/farmacologia , Falência Hepática Aguda/induzido quimicamente , Fígado/efeitos dos fármacos , Silimarina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Apoptose , Sinergismo Farmacológico , Imuno-Histoquímica , Masculino , Oxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA