Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000187

RESUMO

The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.


Assuntos
Dieta Cetogênica , Humanos , Animais , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Metabolismo Energético , Tecido Adiposo Marrom/metabolismo , Termogênese
2.
Life Sci ; 351: 122843, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880168

RESUMO

AIMS: Carbohydrate-responsive element-binding protein (ChREBP) is a transcription factor that regulates several metabolic genes, including the lipogenic enzymes necessary for the metabolic conversion of carbohydrates into lipids. Although the crucial role of ChREBP in the liver, the primary site of de novo lipogenesis, has been studied, its functional role in adipose tissues, particularly brown adipose tissue (BAT), remains unclear. In this study, we investigated the role of ChREBP in BAT under conditions of a high-carbohydrate diet (HCD) and ketogenic diet (KD), represented by extremely low carbohydrate intake. MAIN METHODS: Using an adeno-associated virus and Cas9 knock-in mice, we rapidly generated Chrebp brown adipocyte-specific knock-out (B-KO) mice, bypassing the necessity for prolonged breeding by using the Cre-Lox system. KEY FINDINGS: We demonstrated that ChREBP is essential for glucose metabolism and lipogenic gene expression in BAT under HCD conditions in Chrebp B-KO mice. After nutrient intake, Chrebp B-KO attenuated the KD-induced expression of several inflammatory genes in BAT. SIGNIFICANCE: Our results indicated that ChREBP, a nutrient-sensing regulator, is indispensable for expressing a diverse range of metabolic genes in BAT.


Assuntos
Tecido Adiposo Marrom , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Regulação da Expressão Gênica , Lipogênese , Camundongos Knockout , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Tecido Adiposo Marrom/metabolismo , Camundongos , Lipogênese/genética , Masculino , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Dieta Cetogênica , Nutrientes/metabolismo
3.
Int J Biol Macromol ; 267(Pt 1): 131474, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599429

RESUMO

Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.


Assuntos
Catequina , Catequina/análogos & derivados , Colecalciferol , Produtos Finais de Glicação Avançada , Ligação Proteica , Albumina Sérica Humana , Catequina/farmacologia , Catequina/química , Catequina/metabolismo , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Colecalciferol/farmacologia , Colecalciferol/metabolismo , Colecalciferol/química , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Termodinâmica , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA