Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 280: 130730, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33964756

RESUMO

Phosphate functionalized graphene oxide (PGO) was successfully prepared by Arbuzov reaction and employed for adsorption of resorcinol from an aqueous phase. The phosphate functional groups were successfully incorporated onto the PGO surface by the formation of P-C bonds as identified by the analysis of FTIR and XPS spectra. The evaluation of adsorption capacity of resorcinol onto PGO exhibited significant improvement of resorcinol removal, achieving an adsorption capacity of 50.25 mg/g in the pH range of 4-7 which was 15 times higher than pristine graphene oxide. The addition of 2.4 M and 5 M NaCl in the adsorption system significantly increased the adsorption capacity towards resorcinol from 50.25 mg/g to 82.10 mg/g and 128.10 mg/g, respectively. Based on kinetics and adsorption isotherm studies, Pseudo-First-Order and Langmuir model are the best model to describe the adsorption process indicating that the adsorption is dominantly controlled by physisorption. The thermodynamic analysis suggested that the adsorption process was the favorable, spontaneous, and endothermic process. Besides, the interplay of hydrogen bonding and π-π interactions is proposed to be the governing physisorption mechanism. The outstanding reusability and better adsorption performance make PGO a promising adsorbent for environmental remediation of resorcinol.


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Ligação de Hidrogênio , Cinética , Fosfatos , Resorcinóis , Poluentes Químicos da Água/análise
2.
Chemosphere ; 256: 127081, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32447112

RESUMO

Discharging coloring products in water bodies has degraded water quality irreversibly over the past several decades. Order mesoporous carbon (OMC) was modified by embedding neodymium(III) chloride on the surface of OMC to enhance the adsorptive removal towards these contaminants. This paper represents an artificial neural network (ANN) based approach for modeling the adsorption process of sunset yellow onto neodymium modified OMC (OMC-Nd) in batch adsorption experiments. Neodymium modified OMC was characterized using N2 adsorption-desorption isotherm, TEM micrographs, FT-IR and XPS spectra analysis techniques. 2.5 wt% Nd loaded OMC was selected as the final adsorbent for further experiments because OMC-2.5Nd showed highest removal efficiency of 93%. The ANN model was trained and validated with the adsorption experiments data where initial concentration, reaction time, and adsorbent dosage were selected as the variables for the batch study, whereas the removal efficiency was considered as the output. The ANN model was first developed using a three-layer back propagation network with the optimum structure of 3-6-1. The model employed tangent sigmoid transfer function as input in the hidden layer whereas a linear transfer function was used in the output layer. The comparison between modeled data and experimental data provided high degree of correlation (R2 = 0.9832) which indicated the applicability of ANN model for describing the adsorption process with reasonable accuracy.


Assuntos
Compostos Azo/química , Modelos Químicos , Redes Neurais de Computação , Adsorção , Carbono/química , Concentração de Íons de Hidrogênio , Cinética , Neodímio , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Chemosphere ; 248: 126078, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32041070

RESUMO

The surface properties of graphene oxide (GO) have been identified as the key effects on the adsorption of Pb(II) from aqueous solutions in this study. This study reveals the effect of the surface reactivity of GO via Carbon Disulfide (CS2) functionalization for Pb(II) adsorption. After successfully preparing CS2 functionalized GO (GOCS), the specific techniques were applied to investigate Pb(II) adsorption onto GOCS. Results indicated that the new sulfur-containing functional groups incorporated onto GOCS significantly enhanced Pb(II) adsorption capacity on GOCS than that of GO, achieving an improvement of 31% in maximum adsorption capacity increasing from 292.8 to 383.4 mg g-1. The equilibrium adsorption capacity for GOCS was 280.2 mg g-1 having an improvement of 83.2% over that of 152.97 mg g-1 for GO at the same initial concentration of 150 mg L-1 under the optimal pH of 5.7. Moreover, the results of adsorption experiments showed an excellent fit to the Langmuir and Pseudo-Second-Order models indicating the monolayer and chemical adsorption, respectively. The mechanism for Pb(II) adsorption on GOCS was proposed as the coordination, electrostatic interactions, cation-pi interactions, and Lewis acid-base interactions. The regeneration study showed that GOCS had an appreciable reusability for Pb(II) adsorption with the adsorption capacity of 208.92 mg g-1 after five regeneration cycles. In summary, GOCS has been proved to be a novel, useful, and potentially economic adsorbent for the high-efficiency removal of Pb(II) from aqueous solutions.


Assuntos
Dissulfeto de Carbono/química , Grafite/química , Chumbo/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Cinética , Propriedades de Superfície
4.
J Contam Hydrol ; 228: 103562, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672254

RESUMO

Phosphate modified ordered mesoporous carbon (MOMC-NP) has been synthesized and proven to be an effective adsorbent for Pb(II) removal from aqueous solutions. However, the key application components of the mass transfer operations and diffusion coefficient have not been determined. In this study, a modified Finite Bath Diffusion Control Model was mathematically developed containing a constant related to the radius of the adsorbent particle and the fractional attainment of adsorption. The adsorption experiments were conducted under various initial Pb(II) concentrations ranging from 60 mg L-1 to 100 mg L-1. The results suggested that the modified Finite Bath Diffusion Control Model was more applicable to the experimental data than the original Finite Bath Diffusion Control Model. The average value of the diffusion coefficient (λD¯) obtained from the modified finite bath diffusion control model was 1.63 × 10-2 cm2 s-1 indicating the effective diffusivity in the adsorption of Pb(II) on MOMC-NP. Overall, the modified Finite Bath Diffusion Control Model exhibited the precise description and simulation of the mass transfer kinetics for Pb(II) adsorption onto MOMC-NP. Therefore, the modified Finite Bath Diffusion Control Model could be effectively used to investigate the mass transfer kinetics of the adsorption process.


Assuntos
Carbono , Poluentes Químicos da Água , Adsorção , Difusão , Cinética , Chumbo , Fosfatos
5.
J Hazard Mater ; 377: 381-390, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31173989

RESUMO

In this study, we first investigated the effects of textural parameters and surface properties of ordered mesoporous carbon (OMC) for the adsorptive removal of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) from aqueous solutions. The BET surface area, pore volume, and surface functional groups of OMC played a crucial role in affecting the adsorption performance of BTEX. Boric acid was used to increase the pore size and BET surface area of OMC from 5.94 nm to 6.74 nm and from 1276 m2/g to 1428 m2/g, respectively. Citric acid was used to introduce more oxygen-containing functional groups on the surface of OMC achieving an overall increase of 11.4% of the oxygen content. The batch adsorption experiments were conducted to evaluate the adsorption capacity for OMC and modified towards BTEX and the results showed that modified OMC exhibited a significant improvement for BTEX removal in the following order: Xylenes > Ethylbenzene > Toluene > Benzene. The BTEX adsorption capacities were improved from 8% to 15% with the addition of boric acid compared to the virgin. Surface functionalized using citric acid exhibited the total adsorption capacity of 142 mg/g with an increment of 40.5% compared to virgin OMC.

6.
J Environ Sci (China) ; 75: 307-317, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30473296

RESUMO

Phenolic compounds and their derivatives have been found in industrial wastewater, which pose threats to the natural environment. Ordered mesoporous carbon (OMC) has been identified as an ideal adsorbent possessing high specific surface area and large pore volume to alleviate these pollutants. A novel ordered mesoporous carbon was prepared using COK-19 template with the cubic Fm3m structure for the first time. Ordered mesoporous silica COK-19 was synthesized and reported in 2015. Sucrose as the carbon precursor was impregnated into the mesopores of silica and converted to carbon through carbonization process using sulfuric acid as a catalyst. Ordered mesoporous carbon was obtained after the removal of silica framework using hydrofluoric acid. Boric acid was employed for the preparation of OMCs with tunable pore sizes in the range of 6.9-16.6 nm. Several characterization techniques such as nitrogen adsorption-desorption isotherms, transmission electron microscope (TEM), Fourier transform infrared spectroscopy, Boehm titration and elemental analysis were employed to characterize the OMCs. The pore size analysis and TEM images confirmed that OMC has replicated the mesostructure of the COK-19. Results obtained from adsorption kinetics and isotherms suggest that the Pseudo-second-order model and Langmuir isotherm well described the experimental data.


Assuntos
Resorcinóis/química , Dióxido de Silício/química , Eliminação de Resíduos Líquidos/métodos , Carbono/química , Cinética
7.
Water Environ Res ; 90(10): 1872-1898, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30180923

RESUMO

A review of the literature published during year 2017 on topics relating to nonpoint source pollution (NPS) is presented. This article is written with a view to cater the need of nonpoint source pollution research and to summarize the new advancements in NPS control. Research developments on assessing, monitoring, and controlling the nonpoint source pollution are the main focus of this review. Future research topics related to NPS are also recommended.


Assuntos
Poluição Difusa , Monitoramento Ambiental , Poluição Difusa/análise , Poluição Difusa/prevenção & controle , Poluição Difusa/estatística & dados numéricos
8.
J Hazard Mater ; 354: 258-265, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29775952

RESUMO

Numerous research works have been devoted in the adsorption area using experimental approaches. All these approaches are based on trial and error process and extremely time consuming. Molecular simulation technique is a new tool that can be used to design and predict the performance of an adsorbent. This research proposed a simulation technique that can greatly reduce the time in designing the adsorbent. In this study, a new Rhombic ordered mesoporous carbon (OMC) model is proposed and constructed with various pore sizes and oxygen contents using Materials Visualizer Module to optimize the structure of OMC for resorcinol adsorption. The specific surface area, pore volume, small angle X-ray diffraction pattern, and resorcinol adsorption capacity were calculated by Forcite and Sorption module in Materials Studio Package. The simulation results were validated experimentally through synthesizing OMC with different pore sizes and oxygen contents prepared via hard template method employing SBA-15 silica scaffold. Boric acid was used as the pore expanding reagent to synthesize OMC with different pore sizes (from 4.6 to 11.3 nm) and varying oxygen contents (from 11.9% to 17.8%). Based on the simulation and experimental validation, the optimal pore size was found to be 6 nm for maximum adsorption of resorcinol.

9.
Water Environ Res ; 89(10): 1580-1602, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954677

RESUMO

This research article depicts a comprehensive review of scientific research advancement on nonpoint source pollution (NPS) in 2016. The causes, impacts, and methods used to mitigate nonpoint source pollution were reviewed. In addition, the assessment of nonpoint source pollution using different modeling techniques, coupled with evaluation and management tools were reviewed. Innovative technologies to reduce nonpoint source pollution were also reviewed in this paper.


Assuntos
Poluição Difusa , Poluição da Água/prevenção & controle , Monitoramento Ambiental
10.
Water Environ Res ; 88(10): 1594-619, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27620104

RESUMO

Research advances on non-point source pollution in the year 2015 have been depicted in this review paper. Nonpoint source pollution is mainly caused by agricultural runoff, urban stormwater, and atmospheric deposition. Modeling techniques of NPS with different tools are reviewed in this article.


Assuntos
Poluição Difusa/análise , Agricultura , Monitoramento Ambiental , Poluição Difusa/estatística & dados numéricos , Chuva , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA