Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2287, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280887

RESUMO

The emergence of collaborations, which standardize and combine multiple clinical databases across different regions, provide a wealthy source of data, which is fundamental for clinical prediction models, such as patient-level predictions. With the aid of such large data pools, researchers are able to develop clinical prediction models for improved disease classification, risk assessment, and beyond. To fully utilize this potential, Machine Learning (ML) methods are commonly required to process these large amounts of data on disease-specific patient cohorts. As a consequence, the Observational Health Data Sciences and Informatics (OHDSI) collaborative develops a framework to facilitate the application of ML models for these standardized patient datasets by using the Observational Medical Outcomes Partnership (OMOP) common data model (CDM). In this study, we compare the feasibility of current web-based OHDSI approaches, namely ATLAS and "Patient-level Prediction" (PLP), against a native solution (R based) to conduct such ML-based patient-level prediction analyses in OMOP. This will enable potential users to select the most suitable approach for their investigation. Each of the applied ML solutions was individually utilized to solve the same patient-level prediction task. Both approaches went through an exemplary benchmarking analysis to assess the weaknesses and strengths of the PLP R-Package. In this work, the performance of this package was subsequently compared versus the commonly used native R-package called Machine Learning in R 3 (mlr3), and its sub-packages. The approaches were evaluated on performance, execution time, and ease of model implementation. The results show that the PLP package has shorter execution times, which indicates great scalability, as well as intuitive code implementation, and numerous possibilities for visualization. However, limitations in comparison to native packages were depicted in the implementation of specific ML classifiers (e.g., Lasso), which may result in a decreased performance for real-world prediction problems. The findings here contribute to the overall effort of developing ML-based prediction models on a clinical scale and provide a snapshot for future studies that explicitly aim to develop patient-level prediction models in OMOP CDM.


Assuntos
Aprendizado de Máquina , Informática Médica , Humanos , Bases de Dados Factuais , Registros Eletrônicos de Saúde
2.
Stud Health Technol Inform ; 310: 1051-1055, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38269975

RESUMO

A clinical decision support system based on different methods of artificial intelligence (AI) can support the diagnosis of patients with unclear diseases by providing tentative diagnoses as well as proposals for further steps. In a user-centred-design process, we aim to find out how general practitioners envision the user interface of an AI-based clinical decision support system for primary care. A first user-interface prototype was developed using the task model based on user requirements from preliminary work. Five general practitioners evaluated the prototype in two workshops. The discussion of the prototype resulted in categorized suggestions with key messages for further development of the AI-based clinical decision support system, such as the integration of intelligent parameter requests. The early inclusion of different user feedback facilitated the implementation of a user interface for a user-friendly decision support system.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Clínicos Gerais , Humanos , Inteligência Artificial , Inteligência , Atenção Primária à Saúde
3.
JMIR Med Inform ; 11: e45116, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535410

RESUMO

BACKGROUND: Common data models (CDMs) are essential tools for data harmonization, which can lead to significant improvements in the health domain. CDMs unite data from disparate sources and ease collaborations across institutions, resulting in the generation of large standardized data repositories across different entities. An overview of existing CDMs and methods used to develop these data sets may assist in the development process of future models for the health domain, such as for decision support systems. OBJECTIVE: This scoping review investigates methods used in the development of CDMs for health data. We aim to provide a broad overview of approaches and guidelines that are used in the development of CDMs (ie, common data elements or common data sets) for different health domains on an international level. METHODS: This scoping review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist. We conducted the literature search in prominent databases, namely, PubMed, Web of Science, Science Direct, and Scopus, starting from January 2000 until March 2022. We identified and screened 1309 articles. The included articles were evaluated based on the type of adopted method, which was used in the conception, users' needs collection, implementation, and evaluation phases of CDMs, and whether stakeholders (such as medical experts, patients' representatives, and IT staff) were involved during the process. Moreover, the models were grouped into iterative or linear types based on the imperativeness of the stages during development. RESULTS: We finally identified 59 articles that fit our eligibility criteria. Of these articles, 45 specifically focused on common medical conditions, 10 focused on rare medical conditions, and the remaining 4 focused on both conditions. The development process usually involved stakeholders but in different ways (eg, working group meetings, Delphi approaches, interviews, and questionnaires). Twenty-two models followed an iterative process. CONCLUSIONS: The included articles showed the diversity of methods used to develop a CDM in different domains of health. We highlight the need for more specialized CDM development methods in the health domain and propose a suggestive development process that might ease the development of CDMs in the health domain in the future.

4.
J Med Internet Res ; 25: e45948, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37486754

RESUMO

The vast and heterogeneous data being constantly generated in clinics can provide great wealth for patients and research alike. The quickly evolving field of medical informatics research has contributed numerous concepts, algorithms, and standards to facilitate this development. However, these difficult relationships, complex terminologies, and multiple implementations can present obstacles for people who want to get active in the field. With a particular focus on medical informatics research conducted in Germany, we present in our Viewpoint a set of 10 important topics to improve the overall interdisciplinary communication between different stakeholders (eg, physicians, computational experts, experimentalists, students, patient representatives). This may lower the barriers to entry and offer a starting point for collaborations at different levels. The suggested topics are briefly introduced, then general best practice guidance is given, and further resources for in-depth reading or hands-on tutorials are recommended. In addition, the topics are set to cover current aspects and open research gaps of the medical informatics domain, including data regulations and concepts; data harmonization and processing; and data evaluation, visualization, and dissemination. In addition, we give an example on how these topics can be integrated in a medical informatics curriculum for higher education. By recognizing these topics, readers will be able to (1) set clinical and research data into the context of medical informatics, understanding what is possible to achieve with data or how data should be handled in terms of data privacy and storage; (2) distinguish current interoperability standards and obtain first insights into the processes leading to effective data transfer and analysis; and (3) value the use of newly developed technical approaches to utilize the full potential of clinical data.


Assuntos
Informática Médica , Humanos , Currículo , Algoritmos , Alemanha
5.
Stud Health Technol Inform ; 305: 139-140, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386977

RESUMO

Current challenges of rare diseases need to involve patients, physicians, and the research community to generate new insights on comprehensive patient cohorts. Interestingly, the integration of patient context has been insufficiently considered, but might tremendously improve the accuracy of predictive models for individual patients. Here, we conceptualized an extension of the European Platform for Rare Disease Registration data model with contextual factors. This extended model can serve as an enhanced baseline and is well-suited for analyses using artificial intelligence models for improved predictions. The study is an initial result that will develop context-sensitive common data models for genetic rare diseases.


Assuntos
Inteligência Artificial , Médicos , Humanos , Doenças Raras/genética
6.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233137

RESUMO

The current generation of sequencing technologies has led to significant advances in identifying novel disease-associated mutations and generated large amounts of data in a high-throughput manner. Such data in conjunction with clinical routine data are proven to be highly useful in deriving population-level and patient-level predictions, especially in the field of cancer precision medicine. However, data harmonization across multiple national and international clinical sites is an essential step for the assessment of events and outcomes associated with patients, which is currently not adequately addressed. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an internationally established research data repository introduced by the Observational Health Data Science and Informatics (OHDSI) community to overcome this issue. To address the needs of cancer research, the genomic vocabulary extension was introduced in 2020 to support the standardization of subsequent data analysis. In this review, we evaluate the current potential of the OMOP CDM to be applicable in cancer prediction and how comprehensively the genomic vocabulary extension of the OMOP can serve current needs of AI-based predictions. For this, we systematically screened the literature for articles that use the OMOP CDM in predictive analyses in cancer and investigated the underlying predictive models/tools. Interestingly, we found 248 articles, of which most use the OMOP for harmonizing their data, but only 5 make use of predictive algorithms on OMOP-based data and fulfill our criteria. The studies present multicentric investigations, in which the OMOP played an essential role in discovering and optimizing machine learning (ML)-based models. Ultimately, the use of the OMOP CDM leads to standardized data-driven studies for multiple clinical sites and enables a more solid basis utilizing, e.g., ML models that can be reused and combined in early prediction, diagnosis, and improvement of personalized cancer care and biomarker discovery.


Assuntos
Informática Médica , Neoplasias , Biomarcadores , Análise de Dados , Bases de Dados Factuais , Registros Eletrônicos de Saúde , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão
7.
Stud Health Technol Inform ; 283: 86-94, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545823

RESUMO

High throughput sequencing technologies have facilitated an outburst in biological knowledge over the past decades and thus enables improvements in personalized medicine. In order to support (international) medical research with the combination of genomic and clinical patient data, a standardization and harmonization of these data sources is highly desirable. To support this increasing importance of genomic data, we have created semantic mapping from raw genomic data to both FHIR (Fast Healthcare Interoperability Resources) and OMOP (Observational Medical Outcomes Partnership) CDM (Common Data Model) and analyzed the data coverage of both models. For this, we calculated the mapping score for different data categories and the relative data coverage in both FHIR and OMOP CDM. Our results show, that the patients genomic data can be mapped to OMOP CDM directly from VCF (Variant Call Format) file with a coverage of slightly over 50%. However, using FHIR as intermediate representation does not lead to further information loss as the already stored data in FHIR can be further transformed into OMOP CDM format with almost 100% success. Our findings are in favor of extending OMOP CDM with patient genomic data using ETL to enable the researchers to apply different analysis methods including machine learning algorithms on genomic data.


Assuntos
Registros Eletrônicos de Saúde , Genômica , Algoritmos , Humanos , Aprendizado de Máquina , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA