Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641535

RESUMO

Fetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early-onset FGR versus control fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency. KEY POINTS: Early-onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia. Growth-restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes. Both placental and brainstem levels of 5-HT were found to be impaired following FGR.

2.
J Physiol ; 601(21): 4667-4689, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589339

RESUMO

Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.


Assuntos
Retardo do Crescimento Fetal , Placenta , Recém-Nascido , Gravidez , Feminino , Humanos , Tronco Encefálico , Pulmão , Hipóxia
3.
Development ; 147(10)2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32366677

RESUMO

Thanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches using two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach uses available lines expressing tTA/rTA to control the timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf), and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Transgenes , Animais , Cerebelo , Embrião de Galinha , Doxiciclina/farmacologia , Extremidades , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transativadores/genética , Transcrição Gênica
4.
J Mater Sci Mater Med ; 30(2): 16, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30671631

RESUMO

Using non-drug, non-surgical treatments for improving bone mineral diseases in newborn babies is an important topic for neonatologists. The present study introduces bacterial synthesized ionic nano-hydroxyapatite (Bio-HA) for the development of bone mineral density in the chicken embryo model. In vitro cytotoxicity analyses were demonstrated the optimal concentrations of Bio-HA compared to a chemically-synthesized hydroxyapatite (Ch-HA). Toxicity of Bio-HA on MCF-7 human cell lines was negligible at the concentrations less than 500 µg/mL whereas Ch-HA showed similar results at the concentrations less than 100 µg/mL. Therefore, concentrations at 50 µg/mL and 100 µg/mL were selected for in ovo injection of both materials into the fertilized eggs. The newly hatched chickens were sacrificed in order to monitor their serological factors, total body mass, bone mineral contents and bone mineral density. The results confirmed that Bio-HA increased the average body weight and bone mineral indices of chickens in comparison to the Ch-HA and negative controls (normal saline and intact groups). In view of the intact group, no liver or kidney damage occurred in the groups receiving Bio-HA which promises the effectiveness of these nanoparticles for the treatment of afterbirth bone mineral deficiency.


Assuntos
Densidade Óssea , Durapatita/química , Nanopartículas/química , Animais , Peso Corporal , Calcificação Fisiológica , Galinhas , Enterobacter aerogenes , Humanos , Injeções , Íons , Rim/efeitos dos fármacos , Rim/embriologia , Fígado/efeitos dos fármacos , Fígado/embriologia , Células MCF-7
5.
Mater Sci Eng C Mater Biol Appl ; 73: 220-224, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183602

RESUMO

Hydroxyapatite (HA)-coated magnetite nanoparticles (MNPs) are being widely investigated for various applications in medical engineering and wastewater treatment. In this work, the MNPs were thoroughly coated by bacterial synthesized HA nanoparticles during biomineralization process using Enterobacter aerogenes. The resulting bacterial-induced precipitate was then calcined at 600°C and investigated with respect to structural characteristics, particle size and magnetic strength by XRD, FT-IR, SEM, EDS, TEM and VSM analyses. The effects of MNPs and HA-coated MNPs (HA-MNPs) on the viability of human MCF-7 cell lines were also investigated via mitochondrial activity test (MTT) and lactate dehydrogenase (LDH) assays. The powder characterization results showed appropriate structural properties for HA-MNPs samples. The particles diameter size of the MNPs and HA-MNPs were in the range of 3-25nm and 20-80nm, respectively. The biologically-synthesized HA-MNPs formed a stable suspension in water while keeping their magnetic property. The saturation magnetization (Ms) of HA-MNPs was measured at ~10emug-1 which was in good agreement with the structural composition of this sample. Finally, the results of the cell lines viability indicated that coating of toxic MNPs via biomineralization was a promising approach in order to synthesize bio-compatible magnetic nanoparticles with suitable physical and chemical structural characteristics. The toxicity level of MNPs was reduced by 10 fold when coated by bacterial-synthesized HA.


Assuntos
Durapatita/toxicidade , Enterobacter aerogenes/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Testes de Toxicidade Aguda , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células MCF-7 , Fenômenos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
6.
Nanomedicine ; 12(5): 1387-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26956413

RESUMO

To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute.


Assuntos
Substitutos Ósseos , Durapatita , Nanopartículas , Animais , Regeneração Óssea , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA