Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Environ Manage ; 366: 121802, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003907

RESUMO

This study proposes a novel one-pot hydrothermal impregnation strategy for surface decoration of waste derived pisum sativum biochar with zero‒dimensional Cu‒MOF Quantum dots (PBC‒HK), with an average particle size of 5.67 nm, for synergistic removal of an emerging sulfur containing drug pantoprazole (PTZ) and Basic Blue 26 (VB) dye within 80 min and 50 min of visible-light exposure, respectively. The designed Integrated Photocatalytic Adsorbent (IPA) presented an enhanced PTZ removal efficiency of 95.23% with a catalyst loading of 0.24 g/L and initial PTZ conc. 30 mg/L at pH 7, within 80 min via synergistic adsorption and photodegradation under visible-light exposure. While, on the other hand, 96.31% VB removal efficiency was obtained in 50 min with a catalyst dosage of 0.20 g/L, initial VB conc. 60 mg/L at pH 7 under similar irradiation conditions. An in-depth analysis of the synergistic adsorption and photocatalysis mechanism resulting in the shortened time for the removal of contaminants in the synergistic integrated model has been performed by outlining the various advantageous attributes of this strategy. The first-order degradation rate constant for PTZ was found to be 0.04846 min-1 and 0.04370 min-1 for PTZ and VB, respectively. Adsorption of contaminant molecules on the biochar (PS‒BC) surface can facilitate photodegradation by accelerating the kinetics, and photodegradation promotes regeneration of adsorption sites, contributing to an overall reduction in operation time for removal of contaminants. Besides enhancing the adsorption of targeted pollutants, the carbon matrix of IPAs serves as a surface for adsorption of intermediates of degradation, thereby minimizing the risk of secondary pollution. The photogenerated holes present in the VB is responsible for the generation of •OH radicals. While, the photogenerated electrons present in the CB are captured by Cu2+ of the MOF metal center, reducing it to Cu+, which is subsequently oxidized to produce additional •OH species in the aqueous medium. This process leads to effective charge separation of the photogenerated charge carriers and minimizes the probability of charge recombination as evident from photoluminescence (PL) analysis. Meanwhile, PL studies, EPR and radical trapping experiments indicate the predominant role of •OH radicals in the removal mechanism of PTZ and VB. The investigation of the degradation reaction intermediates was confirmed by HR‒LCMS, on the basis of which the plausible degradation pathway was elucidated in detail. Moreover, effects of pH, inorganic salts, other organic compounds and humic acid concentration have been investigated in detail. The environmental impact of the proposed method was comprehensively evaluated by ICP-OES analysis and TOC and COD removal studies. Furthermore, the economic feasibility and the cost-effectiveness of the catalyst was assessed to address the potential for large scale commercialization. Notably, this research not only demonstrates a rational design strategy for the utilization of solid waste into treasure via the fabrication of IPAs based on MOF Quantum dots (QDs) and waste-derived biochar, but also provides a practical solution for real wastewater treatment systems for broader industrial applications.

2.
Environ Res ; 259: 119435, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914255

RESUMO

Herein, the study introduces a novel bifunctional In2S3/MgTiO3/TiO2@N-CNT (IMTNC) nanocomposite, which is poised to revolutionize the detection and removal of clothianidin (CLD) from aquatic environments by synergistic adsorption and photodegradation. Confirmation of the material's synthesis was done using structural, optical, morphological, and chemical characterizations. An outstanding sensitivity of 2.168 µA/nM.cm2 with a linear range of 4-100 nM and a LOD of 0.04 nM, along with an exceptional elimination efficiency of 98.06 ± 0.84% for about 10 ppm CLD within 18 min was demonstrated by the IMTNC nanocomposite. Extensive studies were carried out to appraise the material's effectiveness in the presence of various interfering species, such as cations, anions, organic compounds, and different water matrices, and a comprehensive assessment of its stability throughout several cycles was made. Response Surface Methodology (RSM) study was used to determine the ideal removal conditions for improved performance. In addition, the catalytic performance in removing various other pollutants was also analyzed. Adding In2S3 and developing N-doped Carbon Nanotubes (N-CNT) increased conductivity and higher electrochemical sensing skills, improving charge transfer and increasing photocatalytic activity. This research underscores the potential of the IMTNC nanocomposite as a promising candidate for advanced environmental sensing and remediation applications.

3.
Chemosphere ; 359: 142343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754491

RESUMO

The current research highlights the fabrication of a novel SnS2/CO32-@Ni-Co LDH (SnS2/NCL) by precipitating Ni-Co LDH over hydrothermally synthesized SnS2 nanoparticles for the enhanced degradation of thiamethoxam (THM) insecticide through the advanced oxidation process. The effect of several reaction parameters was optimized, and a maximum degradation of 98.1 ± 1.2 % with a rate constant of 0.0541 min-1 of 10 ppm THM was reached at a catalyst loading of 0.16 gL-1 using 0.3 mM of H2O2 within 70 min of visible light irradiation. The effect of metal cations, inorganic anions, dissolved organic matter, organic compounds and water samples on the photodegradation performance of SnS2/NCL nanocomposite was also examined to evaluate the prepared photocatalyst's suitability for use in actual wastewater conditions. The metal cations blocked the active sites of the photocatalyst and reduced the degradation efficiency except for Fe2+ ions, since it is a Fenton reagent and increased the production of hydroxyl radicals. Inorganic anions are the scavengers of hydroxyl radicals and hinder photocatalytic activity. Meanwhile, lake water containing varying degrees of co-existing ions shows the lowest degradation efficiency among other water samples. The SnS2/NCL nanocomposite could be reused for five cycles while maintaining a photocatalytic efficiency of 83.6 ± 0.3 % in the fifth run. The prepared SnS2/NCL nanocomposite also showed excellent photodegradation of several other emerging organic pollutants with an efficiency of over 80 % under optimum conditions. Incorporating Ni-Co LDH with SnS2 helped to delocalize photoinduced charges, leading to increased photocatalytic activity and a slower electron-hole recombination rate. The present research highlights the photocatalytic activity of SnS2/NCL photocatalysts for the photocatalytic degradation of emerging contaminants from wastewater.


Assuntos
Inseticidas , Fotólise , Tiametoxam , Compostos de Estanho , Poluentes Químicos da Água , Catálise , Tiametoxam/química , Inseticidas/química , Poluentes Químicos da Água/química , Compostos de Estanho/química , Sulfetos/química , Oxirredução , Nanocompostos/química , Níquel/química , Cobalto/química , Águas Residuárias/química , Luz , Peróxido de Hidrogênio/química
4.
Nanoscale Adv ; 6(11): 2741-2765, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817430

RESUMO

Nanomaterials play a decisive role in environmental applications such as water purification, pollutant monitoring, and advanced oxidation-based remediation processes, particularly in semiconductor and metal sulfide-based photocatalysis. Metal sulfides are ideal for photocatalysis because of their unique optical, structural, and electronic characteristics. These properties enable the effective use of solar energy to drive various catalytic reactions with potential uses in environmental remediation with sustainable energy production. Among them, nickel sulfides (NiS) stand out for their narrow band gaps, high stability, and cost-effectiveness. This review thoroughly analyzes recent advancements in employing nickel-sulfide-based nanostructures for water decontamination. It begins by addressing environmental material needs and emphasizing the properties of nickel sulfide. To improve photocatalytic performance, controlled processes that affect the active structure, shape, composition, and size of nickel sulfide photocatalysts are examined, along with their synthesis methods. The heart of the review article is a detailed analysis of the modification of NiS through metal and non-metal doping, heterojunction, and nanocomposite formation for enhanced photocatalytic performance. The discussion also includes metal-modified nanostructures, metal oxides, and carbon-hybridized nanocomposites. This study underscores notable advancements in the degradation efficiency of NiS photocatalysts, rivaling their costly noble-metal counterparts. The analysis concludes with potential future directions for nickel sulfide-based photocatalysts in sustainable environmental remediation.

5.
Sci Rep ; 14(1): 1118, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212420

RESUMO

The current study reported a facile co-precipitation technique for synthesizing novel NiCo2S4/chitosan nanocomposite. The photocatalytic activity of the prepared nanocomposite was evaluated using congo red (CR) dye as a target pollutant. The central composite design was employed to examine the impact of different reaction conditions on CR dye degradation. This study selected the pH, photocatalyst loading, initial CR concentration and reaction time as reaction parameters, while the degradation efficiency (%) was selected as the response. A desirability factor of 1 suggested the adequacy of the model. Maximum degradation of 93.46% of 35 ppm dye solution was observed after 60 min of visible light irradiation. The response to surface methodology (RSM) is a helpful technique to predict the optimum reaction conditions of the photodegradation of CR dye. Moreover, NiCo2S4/Ch displayed high recyclability and reusability up to four consecutive cycles. The present study suggests that the prepared NiCo2S4/chitosan nanocomposite could prove to be a viable photocatalyst for the treatment of dye-contaminated wastewater.

6.
RSC Adv ; 14(5): 3447-3472, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38259991

RESUMO

Boron nitride has gained wide-spread attention globally owing to its outstanding characteristics, such as a large surface area, high thermal resistivity, great mechanical strength, low density, and corrosion resistance. This review compiles state-of-the-art synthesis techniques, including mechanical exfoliation, chemical exfoliation, chemical vapour deposition (CVD), and green synthesis for the fabrication of hexagonal boron nitride and its composites, their structural and chemical properties, and their applications in hydrogen production and environmental remediation. Additionally, the adsorptive and photocatalytic properties of boron nitride-based nanocomposites for the removal of heavy metals, dyes, and pharmaceuticals from contaminated waters are discussed. Lastly, the scope of future research, including the facile synthesis and large-scale applicability of boron nitride-based nanomaterials for wastewater treatment, is presented. This review is expected to deliver preliminary knowledge of the present state and properties of boron nitride-based nanomaterials, encouraging the future study and development of these materials for their applications in various fields.

7.
Sci Rep ; 13(1): 18051, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872297

RESUMO

A novel Chitosan/Indium sulfide (CS/In2S3) nanocomposite was created by co-precipitating Chitosan and InCl3 in solution, resulting in In2S3 agglomeration on the Chitosan matrix with a remarkable pore diameter of 170.384 Å, and characterized it for the physical and chemical properties. Under optimal conditions (pH = 7, time = 60 min, catalyst dosage = 0.24 g L-1, and dye concentration = 100 mg L-1), the synthesized nanocomposite demonstrated remarkable adsorption capabilities for Victoria Blue (VB), attaining a removal efficiency of 90.81%. The Sips adsorption isotherm best matched the adsorption process, which followed pseudo-second-order kinetics. With a rate constant of 6.357 × 10-3 g mg-1 min-1, the highest adsorption capacity (qm) was found to be 683.34 mg g-1. Statistical physics modeling (SPM) of the adsorption process revealed multi-interaction and multi-molecular adsorption of VB on the CS/In2S3 surface. The nanocomposite demonstrated improved stability and recyclability, indicating the possibility for low-cost, reusable wastewater dye removal adsorbents. These results have the potential to have practical applications in environmental remediation.

8.
RSC Adv ; 13(33): 23197-23210, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37545599

RESUMO

Biodiesel is a less hazardous, environmentally friendly biofuel that has been extensively investigated in modern years to ensure that we lessen our dependency on fossil fuels and mitigate climate change. While fossil fuel substitutes like biodiesel may help transition to a less polluted world, industrial-scale manufacturing still relies highly on chemical catalysis. However, heterogeneous solid catalysts result in less activity for biodiesel production due to their deactivation effects, porosity, surface area, material stability, and lower reactivity under moderate conditions. The "sulfonated carbons" are metal-free solid protonic acids distinguished by their distinctive carbon structure and Brønsted acidity (H0 = 8-11). Heterogeneous sulfonated catalysts derived from waste biomass were a significant focus of the most advanced biodiesel processing techniques for simple and low-cost manufacturing processes. This study discusses the advantages and disadvantages of various catalysts, biomass sources and properties, synthesis of catalysts, and factors influencing the insertion of active sulfonic sites on biomass surfaces. Additionally, transesterification and esterification reaction mechanisms and kinetics are discussed. At last, future directions are provided for young, dynamic researchers.

9.
Sci Rep ; 13(1): 12940, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558776

RESUMO

In this work, the author developed Ca4Fe9O17/biochar (CFB) via a green method through a facile co-precipitation procedure involving egg shells as calcium precursor and investigating its performance in single as well as binary solution of methylene blue (MB) and rhodamine B (RhB). The CFB nanocomposite was characterized by XRD, SEM, TEM, XPS, Raman, FTIR, BET, and VSM. ESR studies show the presence of hydroxyl (·OH) and superoxide (O2·¯) radicals, which are primary radical species for pollutant degradation. The average crystalline size of CFB nanocomposites was found to be 32.992 nm using XRD, whereas TEM analysis indicates a particle diameter of 35-36 nm. The degradation efficacy of MB and RhB dyes was achieved at 99.2% and 98.6%, respectively, in a single solution, whereas 99.4% and 99.2%, respectively, in a binary solution within 36 min. Additionally, an iron cluster was formed during the degradation process of MB dye. The degradation of organic contaminants and generation of iron clusters from the degraded dye products were both expedited by the remarkable extension effect of the Ca4Fe9O17 in the CFB nanocomposites. The three processes were achieved using CFB nanocomposite: (1) the advanced oxidation process; (2) degradation of MB and RhB dye in single as well as binary solution with enhanced efficiency, (3) the production of the iron cluster from degraded products. Thus, these three steps constitute a smart and sustainable way that leads to an effective effluent water treatment system and the generation of iron clusters preventing secondary pollution.

10.
Environ Sci Pollut Res Int ; 30(39): 90410-90457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474851

RESUMO

Water pollution caused by organic dyes is one of the greatest threats to the ecosystem. The removal of dyes from water has remained a challenge for scientists. Recently, metal sulphides have emerged as a potential candidate for water remediation applications. The efficient charge transportation, greater surface-active sites, and low bandgap of metal sulphides make them an excellent choice of semiconductor photocatalysts for degradation of dyes. This review summarises the potential application of metal sulphides and their heterojunctions for the photocatalytic degradation of organic dyes from wastewater. A detailed study has been presented on the synthesis, basics of photodegradation and heterojunctions and photocatalytic activity. The effect of the use of templates, doping agents, synthesis route, and various other factors affecting the photocatalytic activity of metal sulphides have been summarised in this review. The synthesis techniques, characterisation techniques, mechanism of degradation of organic dyes by Z-scheme heterojunction photocatalyst, reusability and stability of metal sulphides, and the scope of future research are also discussed. This study indicates that Scopus-based core gathered data could be used to give an objective overview of the global dye degradation research from 2008 to 2023 (15 years). All data (articles, authors, keywords, and publications) is compiled in the Scopus database. For the bibliometric study, 1962 papers relevant to dye photodegradation by sulfide-based photocatalysts were found, and this number rises yearly. A bibliometric analysis provides a 15-year evaluation of the state-of-the-art research on the impact of metal sulfide-based photocatalysts on the photodegradation of dyes.


Assuntos
Ecossistema , Metais , Catálise , Metais/química , Água , Corantes/química
11.
Environ Res ; 236(Pt 1): 116702, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37490976

RESUMO

Environmental pollution and energy crisis have recently become one of the major global concerns. Insincere discharge of massive amount of organic and inorganic wastes into the aqueous bodies causes serious impact on our environment. However, these organic substances are significant sources of carbon and energy that could be sustainably utilized rather than being discarded. Photocatalytic fuel cell (PFC) is a smart and novel energy conversion device that has the ability to achieve dual benefits: degrading the organic contaminants and simultaneously generating electricity, thereby helping in environmental remediation. This article presents a detailed study of the recent advancements in the development of PFC systems and focuses on the fundamental working principles of PFCs. The degradation of various common organic and inorganic contaminants including dyes and antibiotics with simultaneous power generation and hydrogen evolution has been outlined. The impact of various operational factors on the PFC activity has also been briefly discussed. Moreover, it provides an overview of the design guidelines of the different PFC systems that has been developed recently. It also includes a mention of the materials employed for the construction of the photo electrodes and highlights the major limitations and relevant research scopes that are anticipated to be of interest in the days to come. The review is intended to serve as a handy resource for researchers and budding scientists opting to work in this area of PFC devices.


Assuntos
Poluentes Ambientais , Eletricidade , Águas Residuárias , Carbono , Poluição Ambiental
12.
Environ Sci Pollut Res Int ; 30(35): 83463-83484, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37340166

RESUMO

The intent of this research work is to implement a biogenic, affordable, and highly effective Ce-Ni@biochar catalyst in order to study its photoactivity in the removal of crystal violet and malachite green oxalate. The catalyst was synthesized using liquid phase reduction method where cerium and nickel nanoparticles are embedded on the rice husk biochar for photocatalytic degradation of organic dyes in the presence of sunshine. Various characterization techniques were conducted on fabricated catalyst for adequate evaluation of the chemical composition as well as morphological and topographical properties of the formed compound. The nanoparticles embedded on biochar persuade increased charge separation that resulted in a substantial decrease in electron-hole recombination rate. The synergistic actions of the catalyst resulted in a high level of photocatalytic activity. The fabricated nanocatalyst showed excellent photoactivity that caused 96 and 99% degradation of crystal violet and malachite green oxalate, a growing industrial pollutant, within 35 and 25 min, respectively. A persuasive mechanism and kinetics are well presented. A series of investigations were done on other factors, such as contact duration, catalyst dosage, starting concentration, interfering ions, and pH, to know its degradation pursuance. The impacts of different water matrices were also investigated. The removal effectiveness of the synthesized catalyst persisted after five consecutive cycles. Marking the burgeoning industrial effluents as a result of rapid industrialization and also focusing on easy availability and low-cost source as well as high efficiency, reusability of the catalyst imparts its novelty and need of this research work.


Assuntos
Violeta Genciana , Nanocompostos , Corantes , Oxalatos
13.
Sci Rep ; 13(1): 9074, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277444

RESUMO

The synthesis of biodiesel from renewable resources has immense potential as a sustainable and cost-effective energy alternative. In this work, a reusable -SO3H functionalized heterogeneous catalyst that has a total acid density of 2.06 mmol/g was prepared from walnut (Juglans regia) shell powder by low-temperature hydrothermal carbonization (WNS-SO3H). Walnut shell (WNS) contains more lignin (50.3%), which shows great resistance toward moisture. The prepared catalyst was employed for the effective conversion of oleic acid to methyl oleate by a microwave-assisted esterification reaction. The EDS analysis revealed the significant presence of sulfur (4.76 wt%), oxygen (51.24 wt%), and carbon (44 wt%) content. The results of the XPS analysis confirm the bonding of C-S, C-C, C=C, C-O, and C=O. Meanwhile, the presence of -SO3H (the responsible factor for the esterification of oleic acid) was confirmed by FTIR analysis. Under the optimized conditions (9 wt% catalyst loading, 1:16 oleic acid to methanol molar ratio, 60 min reaction time, and 85 °C temperature), the conversion of oleic acid to biodiesel was found to be 99.01 ± 0.3%. The obtained methyl oleate was characterized by employing 13C and 1H nuclear magnetic spectroscopy. The conversion yield and chemical composition of methyl oleate were confirmed by gas chromatography analysis. In conclusion, it can be a sustainable catalyst because the catalyst preparation controls the agro-waste, a great conversion is achieved due to the high lignin content, and the catalyst was reusable for five effective reaction cycles.

14.
Sci Rep ; 13(1): 7708, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173397

RESUMO

Herein, a binary nanocomposite CdS/CeO2 has been fabricated via a one-pot co-precipitation method for the degradation of Rose Bengal (RB) dye. The structure, surface morphology, composition, and surface area of the prepared composite were characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Brunaur-Emmett-Teller analysis UV-Vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The prepared CdS/CeO2(1:1) nanocomposite has a particle size of 8.9 ± 0.3 nm and a surface area of 51.30 m2/g. All the tests indicated the agglomeration of CdS nanoparticles over the surface of CeO2. The prepared composite showed excellent photocatalytic activity in the presence of hydrogen peroxide under solar irradiation towards the degradation of Rose Bengal. Near to about complete degradation of 190 ppm of RB dye could be achieved within 60 min under optimum conditions. The enhanced photocatalytic activity was attributed to the delayed charge recombination rate and a lower bandgap of the photocatalyst. The degradation process was found to follow pseudo-first-order kinetics with a rate constant of 0.05824 min-1. The prepared sample showed excellent stability and reusability and maintained about 87% of the photocatalytic efficiency till the fifth cycle. A plausible mechanism for the degradation of the dye is also presented based on the scavenger experiments.

15.
Chemosphere ; 331: 138743, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37105310

RESUMO

Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Hidrogéis , Águas Residuárias , Poluentes Químicos da Água/análise , Metais Pesados/análise , Polímeros , Poluentes Ambientais/análise , Purificação da Água/métodos , Adsorção
16.
Adv Colloid Interface Sci ; 315: 102890, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054653

RESUMO

Given their unique characteristics and properties, Hydroxyapatite (HAp) nanomaterials and nanocomposites have been used in diverse advanced catalytic technologies and in the field of biomedicine, such as drug and protein carriers. This paper examines the structure and properties of the manufactured HAp as well as a variety of synthesis methods, including hydrothermal, microwave-assisted, co-precipitation, sol-gel, and solid-state approaches. Additionally, the benefits and drawbacks of various synthesis techniques and ways to get around them to spur more research are also covered. This literature discusses the various applications, including photocatalytic degradation, adsorptions, and protein and drug carriers. The photocatalytic activity is mainly focused on single-phase, doped-phase, and multi-phase HAp, while the adsorption of dyes, heavy metals, and emerging pollutants by HAp are discussed in the manuscript. Furthermore, the use of HAp in treating bone disorders, drug carriers, and protein carriers is also conferred. In light of this, the development of HAp-based nanocomposites will inspire the next generation of chemists to improve upon and create stable nanoparticles and nanocomposites capable of successfully addressing major environmental concerns. This overview's conclusion offers potential directions for future study into HAp synthesis and its numerous applications.


Assuntos
Recuperação e Remediação Ambiental , Nanocompostos , Nanopartículas , Durapatita/química , Portadores de Fármacos/química , Nanocompostos/química
17.
Environ Sci Pollut Res Int ; 30(18): 53887-53903, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36867337

RESUMO

Herein, a novel nanocomposite, namely, Zn-modified CeO2@biochar (Zn/CeO2@BC), is synthesized via facile one-step sol-precipitation to study its photocatalytic activity towards the removal of methylene blue dye. Firstly, Zn/Ce(OH)4@biochar was precipitated by adding sodium hydroxide to cerium salt precursor; then, the composite was calcined in a muffle furnace to convert Ce(OH)4 into CeO2. The crystallite structure, topographical and morphological properties, chemical compositions, and specific surface area of the synthesized nanocomposite are characterized by XRD, SEM, TEM, XPS, EDS, and BET analysis. The nearly spherical Zn/CeO2@BC nanocomposite has an average particle size of 27.05 nm and a specific surface area of 141.59 m2/g. All the tests showed the agglomeration of Zn nanoparticles over the CeO2@biochar matrix. The synthesized nanocomposite showed remarkable photocatalytic activity towards removing methylene blue, an organic dye commonly found in industrial effluents. The kinetics and mechanism of Fenton-activated dye degradation were studied. The nanocomposite exhibited the highest degradation efficiency of 98.24% under direct solar irradiation of 90 min, at an optimum dosage of 0.2 g l-1 catalyst and 10 ppm dye concentration, in the presence of 25% (V/V) 0.2 ml (4 µl/ml) hydrogen peroxide. The hydroxyl radical generated from H2O2 during the photo-Fenton reaction process was attributed to the nanocomposite's improved photodegradation performance. The degradation process followed pseudo-first-order kinetics having a rate constant (k) value of 0.0274 min-1.


Assuntos
Peróxido de Hidrogênio , Nanocompostos , Peróxido de Hidrogênio/química , Azul de Metileno/química , Oxirredução , Zinco , Catálise , Nanocompostos/química
18.
Environ Sci Pollut Res Int ; 30(14): 39377-39417, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36752919

RESUMO

With rapid increase in the human population, a large amount of wastewater is generated every year. The availability of fresh water is decreasing at an alarming rate due to rapid industrialization and agricultural development. Pharmaceutical drugs which are credited for improving standards of life worldwide have emerged as major water contaminants, raising global concern about their potential risk to human health and environment. The presence of pharmaceutical compounds is detected in surface water (sea, river, lakes, etc.), groundwater, effluents from municipal, hospitals, and wastewater treatment plants, and even in drinking water. Efficient removal of pharmaceutical pollutants still remains a challenging task. Many techniques, including photodegradation, photocatalysis, oxidation, reverse osmosis, biodegradation, nanofiltration, adsorption, etc., have been used for the remediation of wastewater. Adsorption of pharmaceutical compounds on nanoadsorbents, as a low-cost and feasible technology, has gained immense popularity for wastewater treatment over the last decade. Adsorption techniques can be integrated with wastewater treatment plants to achieve efficient removal on an industrial level. Herein, we review the literature on the remediation techniques used for the pharmaceutical waste treatment using carbon nanotubes, metal oxides, nanoclay, and new-generation MXenes via adsorption. These materials show excellent adsorptive properties owing to their high surface area, low cost, high porosity, easy functionalization, and high surface reactivity. The adsorption mechanism of the nanoadsorbents and their reusability as a factor of sustainability have also been included in the review. The factors affecting the adsorption, including pH, the concentration of adsorbate, ionic strength, and adsorbate dose, have also been discussed.


Assuntos
Nanocompostos , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Adsorção , Purificação da Água/métodos , Água , Preparações Farmacêuticas
19.
Sci Rep ; 13(1): 3009, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810633

RESUMO

A ternary nanohybrid CuO/Mn3O4/CeO2 was developed in the present work using a co-precipitation-assisted hydrothermal method. The designed photocatalyst's structural, morphology, elemental composition, electronic states of elements, and optical properties were studied using corresponding analytical techniques. Results from PXRD, TEM/HRTEM, XPS, EDAX, and PL showed that the desired nanostructure had formed. Using Tauc's energy band gap plot, it was determined that the nanostructures band gap was ~ 2.44 eV, which showed the band margins of the various moieties, CeO2, Mn3O4, and CuO, had modified. Thus, improved redox conditions led to a substantial decrease in the recombination rate of electron-hole pairs, which was further explained by a PL study in that charge separation plays a key role. Under exposure to visible light irradiation for 60 min, it was revealed that the photocatalyst achieved 98.98% of photodegradation efficiency for malachite green (MG) dye. The process of photodegradation proceeded according to a pseudo-first-order reaction kinetic model with an excellent rate of reaction of 0.07295 min-1 with R2 = 0.99144. The impacts of different reaction variables, inorganic salts, and water matrices were investigated. This research seeks to create a ternary nanohybrid photocatalyst with high photostability, visible spectrum activity, and reusability up to four cycles.

20.
J Environ Manage ; 334: 117496, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801688

RESUMO

This study aims to fabricate a novel integrated photocatalytic adsorbent (IPA) via a green solvothermal process employing tea (Camellia sinensis var. assamica) leaf extract as a stabilizing and capping agent for the removal of organic pollutants from wastewater. An n-type semiconductor photocatalyst, SnS2, was chosen as a photocatalyst due to its remarkable photocatalytic activity supported over areca nut (Areca catechu) biochar for the adsorption of pollutants. The adsorption and photocatalytic properties of fabricated IPA were examined by taking amoxicillin (AM) and congo red (CR) as two emerging pollutants found in wastewater. Investigating synergistic adsorption and photocatalytic properties under varying reaction conditions mimicking actual wastewater conditions marks the novelty of the present research. The support of biochar for the SnS2 thin films induced a reduction in charge recombination rate, which enhanced the photocatalytic activity of the material. The adsorption data were in accordance with the Langmuir nonlinear isotherm model, indicating monolayer chemosorption with the pseudo-second-order rate kinetics. The photodegradation process follows pseudo-first-order kinetics with the highest rate constant of 0.0450 min-1 for AM and 0.0454 min-1 for CR. The overall removal efficiency of 93.72 ± 1.19% and 98.43 ± 1.53% could be achieved within 90 min for AM and CR via simultaneous adsorption and photodegradation model. A plausible mechanism of synergistic adsorption and photodegradation of pollutants is also presented. The effect of pH, Humic acid (HA) concentration, inorganic salts and water matrices have also been included.The photodegradation activity of SnS2 under visible light coupled with the adsorption capability of the biochar results in the excellent removal of the contaminants from the liquid phase.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Amoxicilina , Vermelho Congo , Água/química , Adsorção , Fotólise , Águas Residuárias , Carvão Vegetal/química , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA