Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(2): 2343-2359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057678

RESUMO

Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.


Assuntos
Peixes-Gato , Metais Pesados , Poluentes Químicos da Água , Animais , Criança , Humanos , Metais Pesados/análise , Rios , Cádmio , Bioacumulação , Saúde Pública , Bangladesh , Chumbo , Peixes , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Medição de Risco
2.
Sci Total Environ ; 876: 162414, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36868275

RESUMO

The occurrence of microplastics (MPs) in aquatic environments has been a global concern because they are toxic and persistent and may serve as a vector for many legacies and emerging pollutants. MPs are discharged to aquatic environments from different sources, especially from wastewater plants (WWPs), causing severe impacts on aquatic organisms. This study mainly aims to review the Toxicity of MPs along with plastic additives in aquatic organisms at various trophic compartments and available remediation methods/strategies for MPs in aquatic environments. Occurrences of oxidative stress, neurotoxicity, and alterations in enzyme activity, growth, and feeding performance were identical in fish due to MPs toxicity. On the other hand, growth inhibition and ROS formation were observed in most of the microalgae species. In zooplankton, potential impacts were acceleration of premature molting, growth retardation, mortality increase, feeding behaviour, lipid accumulation, and decreased reproduction activity. MPs togather with additive contaminants could also exert some toxicological impacts on polychaete, including neurotoxicity, destabilization of the cytoskeleton, reduced feeding rate, growth, survivability and burrowing ability, weight loss, and high rate of mRNA transcription. Among different chemical and biological treatments for MPs, high removal rates have been reported for coagulation and filtration (>86.5 %), electrocoagulation (>90 %), advanced oxidation process (AOPs) (30 % to 95 %), primary sedimentation/Grit chamber (16.5 % to 58.84 %), adsorption removal technique (>95 %), magnetic filtration (78 % to 93 %), oil film extraction (>95 %), and density separation (95 % to 100 %). However, desirable extraction methods are required for large-scale research in MPs removal from aquatic environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Águas Residuárias , Peixes , Organismos Aquáticos
3.
Mar Pollut Bull ; 183: 114044, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007270

RESUMO

The Karnaphuli River is one of the prime and most important streams in the southeastern part of Bangladesh. The favorable water current and the geographic location have rendered the Karnaphuly River estuary a suitable habitat and a breeding ground for diverse fish species. Reversely, this estuary has been polluted by discharges from many point and non-point sources due to its location in the catchment area of a heavily industrialized area, Chattagram port city. However, published research concerning the status of toxic and trace elements in some commercially important benthic and pelagic coastal fish species in Karnaphuli River estuary was not found in the existing literature. Therefore, it's an important field of study on the assessment of toxic and trace elements concentration in the commercially important benthic and pelagic coastal fish species and their health taxation in the Karnaphuli River Estuary. Energy dispersive X-ray fluorescence (ED-XRF) was used to quantify trace metal concentration in edible parts of the fish species. This study revealed that the rank of the trace metals concentration was as follows (mg/kg): Zn (37.1) > Mn (16.12) > V (11.16) > Cu (9.49) > Rb (5.62) > Pb (2.98) > Cr (1.59) > Co (1.17). The F-test showed that a significant difference at 95 % confidence level in the distribution pattern of trace metals concentration among the examined fish species in the study area. The metal pollution index (MPI) in the muscle of fishes were found to be in the following order: L. bata > P. monodon > T. cirratus > M. bleekeri > O. pabda > H. nehereus > L. calcarifer > P. argenteus > P. paradiseus > T. toli, and the MPIs for most of the benthic fish species were higher compared to the pelagic fishes. On the other hand, the examined fish species were significantly bio-accumulative with the highest bio-accumulation factor value for benthic species. The multivariate analysis identified that the sources of the trace metals were associated with anthropogenic activities. For the human health risk assessment concern, estimated daily intake, target hazard quotient and cancer-causing risk were estimated. The results for non-cancer hazardous index values were found to be lower than unity. On the other hand, the total cancer risk data ranging from 1.24E-05 to 1.70E-05 were fallen within the range for the threshold values (1.0E-06 to 1.0E-04). However, considering the suggested values set by the environmental and regulatory agencies, it has been recommended that no significant non-carcinogenic and cancer-causing health risk for humans was seen due to the consumption of the studied fish species.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Bangladesh , Monitoramento Ambiental/métodos , Peixes , Humanos , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Rios , Oligoelementos/análise , Água/análise , Poluentes Químicos da Água/análise
4.
Mar Pollut Bull ; 175: 113274, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35066413

RESUMO

Quantification of four toxic metals (As, Cr, Cd, and Pb) in water and sediments at the Sitakunda ship breaking area in Bangladesh was studied. Along with this, sediment quality and ecological risk were evaluated for the metal intrusion to the study area. A total sample number of 120 (water; n = 60 and sediment; n = 60) were analyzed for both winter and summer seasons using atomic absorption spectrophotometer (AAS). The trace metal concentration in both water and sediment showed decreasing trend as follows; Cr (mean-W: 0.118 mg/L; mean-S:121.87 mg/kg) > Pb (mean-W: 0.064 mg/L; mean-S: 65.31 mg/kg) > As (mean-W: 0.03 mg/L; mean-S: 32.53 mg/kg) > Cd (mean-W: 0.004 mg/L; mean-S: 4.81 mg/kg). However, in both segments, the concentrations of the toxic metals exceeded the recommended acceptable limits. As and Cd showed significant variation (water and sediment) between the seasons, while Pb and Cr had no seasonal impact. Metal pollution index (MPI) and contamination factor (CF) was evaluated and revealed that the study area exhibited the critical score of water quality (MPI > 100). The cumulative effect of the metal concentrations was high (CI > 3). The assessed mean geoaccumulaiton index (Igeo) revealed that the study area was moderate to strongly polluted except for Cr. According to the contamination factor (CF), the sediment samples were moderate to highly contaminated by Cd, Pb, and As. Moreover, the explored range of pollution load index (PLI) in all sampling sites in the ship breaking region was from 1.75 to 3.10, suggesting that the sediment in the study area was highly polluted by heavy metals (PLI > 1). The risk index and the potential ecological risk index (PERI) suggested that the study area was at high risk due to metals pollution. Therefore, it is obligatory to maintain some crucial efforts for the betterment of the surrounding environment near the investigated sites.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Bangladesh , Baías , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Navios , Poluentes Químicos da Água/análise , Qualidade da Água
5.
Mar Pollut Bull ; 173(Pt B): 113160, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34808545

RESUMO

The focus of this study was to determine the depth-wise variability of physicochemical properties (i.e., pH, TOC, TN, and EC), and heavy metals (i.e., Pb, Cu, Zn, As, and Cr) concentration, and the associated biological and ecological risks of the mangrove sediment. The accumulation of metal contents and the phytoremediation and phytoextraction were also investigated in a mangrove species, Acanthus ilicifolius. The mangrove sediment consists of a higher proportion of sand fraction (56.6-74.7%) followed by clay (10-28%) and silt (10.1-15. 7%) fractions. The concentrations (mg/kg) of Pb, Cu, Zn, As, and Cr were ranged from 22.05-34.3, 8.58-22.77, 85.07-114, 5.56-12.91, and 0.98-5.12 in all the sediment layers. The hierarchy of the mean metal concentration in sediment was Zn (102 mg/kg) > Pb (25.6 mg/kg) > Cu (14.8 mg/kg) > As (8.79 mg/kg) > Cr (2.74 mg/kg) respectively. The examined metal concentrations were below the respective average shale values (ASVs). The degree of environmental, ecological, and biological risks was minimal according to various pollution indices like geoaccumulation index (Igeo), contamination factor (CF), and pollution load index (PLI). According to sediment quality guidelines (SQGs), the adverse biological risk effect was not likely to occur. The result of the potential ecological risk index (PERI) demonstrated that the study area was in the low-risk condition as the corresponded RI value < 100. A combined influence of geogenic and anthropogenic factors was identified as the metal sources by multivariate analysis. The study found that the accumulation rate of the metal contents was higher in leaves than that of roots. The mean descending metal concentration values were Zn (107) > Pb (28. 7) > Cu (16.9) > As (11.2) > Cr (4.99) in leaves and Zn (104.32) > Pb (27.02) > Cu (15.29) > As (10.39) > Cr (3.80) in roots. The translocation and bioaccumulation factors of heavy metals suggested that the mangrove plant species, A. ilicifolius can be used for phytoremediation and phytoextraction since the bio-concentration factor and translocation factor > 1. The studied species exhibited the metal tolerance associated with two following strategies, metal exclusion, and metal accumulation. However, excess metal tolerance can impact the surrounding marine environment.


Assuntos
Acanthaceae , Metais Pesados , Poluentes Químicos da Água , Efeitos Antropogênicos , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Poluentes Químicos da Água/análise
6.
Mar Pollut Bull ; 145: 436-447, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31590808

RESUMO

Despite the beneficial aspect of aquatic food's consumption, bioaccumulation of toxic metals in fish can enhance the health risk for the consumers. Heavy metals were measured from editable tissues of some commercial fish species like Latis calcarifer, Silonia silondia, Clupisoma garua, Planiliza subviridis, Otolithoides pama, Tenulosa ilisa, Rhinomugil corsula, and Aila coila in the Meghna river estuary in Noakhali district. Heavy metals such as As, Pb, Cd, Cu, and Cr were detected by ICP-MS, which were significantly different (p ≤ 0.01), and the hierarchy of all mean concentrations were: Cu (5.14 mg/kg) > Pb (3.79 mg/kg) > As (1.08 mg/kg) > Cr (0.78 mg/kg) > Cd (0.12 mg/kg). The mean concentration of Cu (6.62 mg/kg) imparted to the maximum level in L. calcarifer, which slightly exceeded the Bangladesh food safety guideline. The mean BAFs of the contaminants were found as: Pb (1042.29) > Cr (1036.47) > As (934.84) > Cd (832.77) > Cu (772). Further, L. calcarifer, S. silondia, C. garua, and P. subviridis showed the bioaccumulative status. To assess the health risk effects, estimated daily intake (EDI), target hazard quotient (THQ) and carcinogenic risk (CR) were conducted. THQs for both adult and children consumers were <1, indicating that, consumers would not experience the non-carcinogenic health effects. Although children were more susceptible than adults, CR for all the consumers was found in the acceptable range (10-6 to 10-4).


Assuntos
Peixes/metabolismo , Carne/análise , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Adulto , Idoso , Animais , Bangladesh , Qualidade de Produtos para o Consumidor , Estuários , Feminino , Contaminação de Alimentos/análise , Humanos , Masculino , Metais Pesados/metabolismo , Pessoa de Meia-Idade , Medição de Risco , Poluentes Químicos da Água/metabolismo , Adulto Jovem
7.
PLoS One ; 14(10): e0219336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622361

RESUMO

The Karnaphuli River estuary, located in southeast coast of Bangladesh, is largely exposed to heavy metal contamination as it receives a huge amount of untreated industrial effluents from the Chottagram City. This study aimed to assess the concentrations of five heavy metals (As, Pb, Cd, Cr and Cu) and their bioaccumulation status in six commercially important fishes, and also to evaluate the potential human health risk for local consumers. The hierarchy of the measured concentration level (mg/kg) of the metals was as follows: Pb (13.88) > Cu (12.10) > As (4.89) > Cr (3.36) > Cd (0.39). The Fulton's condition factor denoted that fishes were in better 'condition' and most of the species were in positive allometric growth. The bioaccumulation factors (BAFs) of the contaminants observed in the species were in the following orders: Cu (1971.42) > As (1042.93) > Pb (913.66) > Cr (864.99) > Cd (252.03), and among the specimens, demersal fish, Apocryptes bato appeared to be the most bioaccumulative organism. Estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI) and carcinogenic risk (CR) assessed for potential human health risk implications suggest that the values were within the acceptable threshold for both adults and children. However, calculated CR values indicated that both age groups were not far from the risk, and HI values demonstrated that children were nearly 6 times more susceptible to non-carcinogenic and carcinogenic health effects than adults.


Assuntos
Bioacumulação , Estuários , Peixes/metabolismo , Contaminação de Alimentos/análise , Metais Pesados , Alimentos Marinhos/análise , Poluentes Químicos da Água , Adulto , Animais , Bangladesh , Criança , Humanos , Metais Pesados/análise , Metais Pesados/metabolismo , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
8.
Mar Pollut Bull ; 141: 137-146, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955718

RESUMO

Samples for sediment and two species of native mangrove plants were collected from seven sampling sites for assessing the level of metal contamination. Results of the studied metals displayed the order of pollution as Fe > Ti > Zr > Rb > Zn > Sr > Pb > Y > Cu > Cr > As accordingly. Geoaccumulation index and contamination factor revealed that the sediment samples were unpolluted to moderately polluted by Zn, Fe, Ti, Rb, Y, and Zr. Ecological risk factor depicted a pollution-free condition in the study areas. PCA, CA, and correlation coefficient indicated that the source of the metals in the environment was anthropogenic. Bioconcentration factor values were found to be below 1 in both plant species. Conversely, transfer factor values for most heavy metals were found to be >1 in both plant species, which reflects the phytoremediation ability of plants.


Assuntos
Acanthaceae/metabolismo , Avicennia/metabolismo , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Acanthaceae/crescimento & desenvolvimento , Avicennia/crescimento & desenvolvimento , Bangladesh , Biodegradação Ambiental , Medição de Risco , Navios , Áreas Alagadas
9.
Mar Pollut Bull ; 140: 255-261, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803641

RESUMO

Sediment samples were collected from twelve selected sites of the Sangu River estuary and seven metals (As, Cr, Cu, Cd, Pb, Ni, Zn) were analyzed with Inductively Coupled Plasma-mass Spectrometry (ICP-MS) to assess the contamination degree of heavy metals in the Sangu River estuary and to represent it as a reference site. This study revealed the descending order of studied metals (mg/kg) observed in sediment as Zn (88.97 ±â€¯58.97) > Ni (32.75 ±â€¯16.09) > Cu (29.2 ±â€¯10.78) > Cr (25.14 ±â€¯5.20) > Pb (19.57 ±â€¯7.01) > As (2.58 ±â€¯2.55). Cadmium was observed below the detection level. Various indices like geo-accumulation index (Igeo), contamination factor (CF), pollution load index (PLI) suggested that the Sangu River estuary is not contaminated by studied metals excepting Pb. PCA and correlation matrix analysis indicates that Pb and Zn may have anthropogenic sources and As, Ni, Zn, Cu, Cr may come from natural sources.


Assuntos
Estuários , Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Bangladesh , Monitoramento Ambiental/métodos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA