Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38722343

RESUMO

Nicotine, a pervasive global environmental pollutant, is released throughout every phase of the tobacco's life cycle. This study examined the probable ameliorative role of Chlorella vulgaris (ChV) extract against nicotine (NIC)-induced hepatic injury in Ehrlich ascites carcinoma (EAC) bearing female Swiss mice. Sixty female Swiss mice were assigned to four equal groups orally gavaged 2% saccharin 0.2 mL/mouse (control group), orally intubated 100 mg ChV /kg (ChV group), orally intubated 100 µg/mL NIC in 2% saccharin (NIC group), and orally intubated NIC + ChV as in group 3 and 2 (NIC+ChV group). The dosing was daily for 4 weeks. Mice from all experimental groups were then inoculated intraperitoneally with viable tumor cells 2.5 × 106 (0.2 mL/mouse) in the fourth week, and the treatments were extended for another 2 weeks. The results have shown that NIC exposure significantly altered the serum levels of liver function indices, lipid profile, LDH, and ALP in the NIC-exposed group. NIC administration significantly increased hepatic inflammation, lipid peroxidation, and DNA damage-related biomarkers but reduced antioxidant enzyme activities. NIC exposure downregulated SOD1, SOD2, CAT, GPX1, and GPX2 but upregulated NF-κB hepatic gene expression. Notably, the presence of the EAC cells outside the liver was common in all mice groups. Liver tissue of the NIC-exposed group showed multifocal expansion of hepatic sinusoids by neoplastic cells. However, with no evidence of considerable infiltration of EAC cells inside the sinusoids or in periportal areas in the NIC + ChV groups. NIC significantly altered caspase-3, Bax, and BcL2 hepatic immune expression. Interestingly, ChV administration significantly mitigates NIC-induced alterations in hepatic function indices, lipid profile, and the mRNA expression of antioxidant and NF-κB genes and regulates the caspase-3, Bax, and BcL2 immunostaining. Finally, the in vivo protective outcomes of ChV against NIC-induced hepatic injury combined with EAC in female Swiss mice could suggest their helpful role for cancer patients who are directly or indirectly exposed to NIC daily.

2.
Chem Biol Interact ; 383: 110690, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37648049

RESUMO

Imidacloprid (IMID) is one of the most widely used neonicotinoid insecticides globally and, consequently, a probable widespread environmental contaminant. The potential neurotoxic effects of IMID have been previously reported. This study aimed to investigate the possible beneficial effect of thymol (TML) in relieving IMID-induced harmful effects on the brain of male Sprague-Dawley rats. For this aim, four groups (10 rats/group) were orally administered corn oil, TML (30 mg/kg b.wt), IMID (22.5 mg/kg b.wt), or TML + IMID for 56 days. The brain tissues were biochemically, histopathologically, and immunohistochemically evaluated. The results displayed that TML significantly restored the IMID-induced depletion of the total antioxidant capacity of the brain tissues. At the same time, the IMID-associated increased levels of lipid peroxidation in terms of malondialdehyde content were markedly suppressed in the TML + IMID group. Also, TML oral dosing markedly reduced the release of inflammatory elements, including nitric oxide and myeloperoxidase, resulting from IMID exposure. Furthermore, the IMID-induced decrease in gamma-aminobutyric acid but the increase in acetylcholinesterase was considerably reversed by TML oral dosing. Additionally, TML oral administration significantly counteracted the IMID-induced brainepatic DNA damage, as revealed by the comet assay. Besides, a significant downregulatibrainepatic Caspase-3 was evident in the TML + IMID group compared to the IMID group. However, TML oral dosing has not significantly altered the IMID-induced nuclear factor (NF-κB p65) increase. Therefore, TML could be a protective agent against IMID-induced detrimental impacts on brain tissue, possibly through its antioxidant, antiapoptotic, and anti-inflammatory activities.


Assuntos
Antioxidantes , Timol , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Acetilcolinesterase , Estresse Oxidativo , Neonicotinoides/toxicidade , Inflamação/induzido quimicamente , Encéfalo
3.
Chem Phys Lipids ; 231: 104931, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619464

RESUMO

Synaptosomal membrane peroxidation and alteration in its biophysical properties are associated with Aluminium (Al) toxicity that may lead to cognitive dysfunction and Alzheimer's disease (AD) like pathogenesis. Here we investigated the therapeutic potential of Lepedium sativum (LS) as a natural anti-inflammatory, antioxidant and as acetyl cholinesterase inhibitor in treating Al induced AD-like in rat model. We utilized ATR-IR spectroscopy to follow the restoration in the damaged membrane structure of isolated rat cortical synaptosomes and its biophysical properties, electron paramagnetic resonance (EPR) spin trapping to follow NADPH oxidase activity (NOX), and EPR spin labelling in response to LS treatment after Al intoxication. We measured the concentration of Ca2+ ions in rat cortical tissue by inductively coupled plasma (ICP), the brain atrophy/curing and hydrocephalus by magnetic resonance imaging (MRI) besides light microscope histopathology. Our results revealed significant increase in synaptosomal membrane rgidification, order, lipid packing, reactive oxygen species (ROS) production and Ca2+ ion concentration as a result of Al intoxication. The dramatic increase in Ca2+ ion concentration detected in AD group associated with the increase in synaptic membrane polarity and EPR-detected order S-parameter suggest that release of synaptic vesicles into synaptic cleft might be hindered. LS treatment reversed these changes in synaptic membranes, and rescued an observed deficit in the exploratory behaviour of AD group. Our results also strongly suggest that the synaptosomal membrane phospholipids that underwent free radical attacks mediated by AlCl3, due to greater NOX activity, was prevented in the LS group. The results of ATR-IR and EPR spectroscopic techniques recommend LS as a promising therapeutic agent against synaptic membrane alterations opening a new window for AD drug developers.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Sinaptossomos/metabolismo , Cloreto de Alumínio/administração & dosagem , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Injeções Intraperitoneais , Masculino , Ratos , Ratos Wistar , Espectrofotometria Infravermelho
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118421, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32473558

RESUMO

Aluminium (Al) is reported to promote beta amyloid (Aß) aggregation, free radical production and disturb acetylcholine metabolism leading to cognitive dysfunction that are strongly associated with Alzheimer's disease (AD). Here we utilized synchrotron Fourier transform infrared microspectroscopy (sFTIRM) to analyse the fine structure of proteins and lipids in the rat cortical brain tissues in response to AlCl3 toxicity and Lepidium sativum (LS) treatment after 42 and 65 days. For statistical analysis, we used principal component analysis (PCA). Our results showed profusion of gauche rotomers form in membrane lipid acyl chains that increases the membrane fluidity and disorder only in AD group indicated by the detected sνCH2 band shift to higher frequency. All half bands width (HBW) values of the decomposed amide I band showed marked decrease in AD group compared to the other tested groups, together with an increase in the amounts of ß-sheets (1641 cm-1) protein and random coil structure (1654 cm-1). These were indicated by a drastic increase in the percentage areas ratios of (1638 cm-1/1654 cm-1) and (1641 cm-1/1654 cm-1) that may be attributed to a stronger the hydrogen bonds that stabilize the protein conformational structure and/or the increase of the ß-strand length due to misfolded Aß formation in response to Al toxicity through transit phase/phases dominated by random coil structure. In curative group, LS treatment reversed these changes and restored the protein and lipid integrities. To conclude, sFTIRM is a powerful tool that shed light on the biomolecular structure of AD-like cortical brain tissue and considered the therapeutic potential of LS as a promising natural AD treatment.


Assuntos
Doença de Alzheimer , Alumínio , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/metabolismo , Análise de Fourier , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA