Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(13): 8228-8248, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424751

RESUMO

The huge development of the industrial sector has resulted in the release of large quantities of phosphate anions which adversely affect the environment, human health, and aquatic ecosystems. Naturally occurring biopolymers have attracted considerable attention as efficient adsorbents for phosphate anions due to their biocompatibility, biodegradability, environmentally-friendly nature, low-cost production, availability in nature, and ease of modification. Amongst them, alginate-based adsorbents are considered one of the most effective adsorbents for removing various types of pollutants from industrial wastewater. The presence of active COOH and OH- groups along the alginate backbone facilitate its physical and chemical modifications and participate in various possible adsorption mechanisms of phosphate anions. Herein, we focus our attention on presenting a comprehensive overview of recent advances in phosphate removal by alginate-based adsorbents. Modification of alginate by various materials, including clays, magnetic materials, layered double hydroxides, carbon materials, and multivalent metals, is addressed. The adsorption potentials of these modified forms for removing phosphate anions, in addition to their adsorption mechanisms are clearly discussed. It is concluded that ion exchange, complexation, precipitation, Lewis acid-base interaction and electrostatic interaction are the most common adsorption mechanisms of phosphate removal by alginate-based adsorbents. Pseudo-2nd order and Freundlich isotherms were figured out to be the major kinetic and isotherm models for the removal process of phosphate. The research findings revealed that some issues, including the high cost of production, leaching, and low efficiency of recyclability of alginate-based adsorbents still need to be resolved. Future trends that could inspire further studies to find the best solutions for removing phosphate anions from aquatic systems are also elaborated, such as the synthesis of magnetic-based alginate and various-shaped alginate nanocomposites that are capable of preventing the leaching of the active materials.

2.
Pharmaceutics ; 13(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807967

RESUMO

To develop an effective pH-sensitive drug carrier, alginate (Alg), carboxymethyl chitosan (CMCs), and aminated chitosan (AmCs) derivatives were employed in this study. A simple ionic gelation technique was employed to formulate Alg-CMCs@AmCs dual polyelectrolyte complexes (PECs) microcapsules as a pH-sensitive carrier for efficient encapsulation and release of diclofenac sodium (DS) drug. The developed microcapsules were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analyzer (TGA), and scanning electron microscope (SEM). The results clarified that formation of dual PECs significantly protected Alg microcapsules from rapid disintegration at colon conditions (pH 7.4), and greatly reduced their porosity. In addition, the dual PECs microcapsules can effectively encapsulate 95.4% of DS-drug compared to 86.3 and 68.6% for Alg and Alg-CMCs microcapsules, respectively. Higher DS-release values were achieved in simulated colonic fluid [SCF; pH 7.4] compared to those obtained in simulated gastric fluid [SGF; pH 1.2]. Moreover, the drug burst release was prevented and a sustained DS-release was achieved as the AmCs concentration increased. The results confirmed also that the developed microcapsules were biodegradable in the presence of the lysozyme enzyme. These findings emphasize that the formulated pH-sensitive microcapsules could be applied for the delivery of diclofenac sodium.

3.
Anal Chem Insights ; 8: 107-15, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24250220

RESUMO

Caduet tablets are novel prescription drug that combines amlodipine besylate (AM) with atorvastatin calcium (AT). A spectrofluorimetric and an HPLC-fluorescence detection methods were developed for simultaneous determination of both drugs in tablets. In the spectrofluorimetric method, native fluorescence of AM and AT were measured in methanol at 442 and 369 nm upon excitation at 361 and 274 nm, respectively. The emission spectrum of each drug reveals zero value at the emission wavelength of the other drug, thus allowing their simultaneous determination without interference. In the HPLC method, separation of AM and AT was achieved within 8 minutes on a C18 column using acetonitrile:phosphate buffer (0.015 M, pH 3) (45:55, v/v) as the mobile phase. Fluorescence detection was carried out using excitation wavelengths 361 and 274 nm and emission wavelengths 442 and 378 nm for AM and AT, respectively. Excellent linearity was observed. Careful validation proved advantages of the new methods: high sensitivity, accuracy, selectivity and suitability for quality control laboratories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA