Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(6): e29761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924137

RESUMO

Globally, Group A rotavirus (RVA) is the leading cause of acute gastroenteritis in children under 5 years old, with Pakistan having the highest rates of RVA-related morbidity and mortality. The current study aims to determine the genetic diversity of rotavirus and evaluate the impact of Rotarix-vaccine introduction on disease epidemiology in Pakistan. A total of 4749 children, hospitalized with acute gastroenteritis between 2018 and 2020, were tested at four hospitals in Lahore and Karachi. Of the total, 19.3% (918/4749) cases were tested positive for RVA antigen, with the positivity rate varying annually (2018 = 22.7%, 2019 = 14.4%, 2020 = 20.9%). Among RVA-positive children, 66.3% were under 1 year of age. Genotyping of 662 enzyme-linked immuno sorbent assay-positive samples revealed the predominant genotype as G9P[4] (21.4%), followed by G1P[8] (18.9%), G3P[8] (11.4%), G12P[6] (8.7%), G2P[4] (5.7%), G2P[6] (4.8%), and 10.8% had mixed genotypes. Among vaccinated children, genotypes G9P[4] and G12P[6] were more frequently detected, whereas a decline in G2P[4] was observed. Phylogenetic analysis confirmed the continued circulation of indigenous genotypes detected earlier in the country except G9 and P[6] strains. Our findings highlight the predominance of G9P[4] genotype after the vaccine introduction thus emphasizing continual surveillance to monitor the disease burden, viral diversity, and their impact on control of rotavirus gastroenteritis in children.


Assuntos
Gastroenterite , Genótipo , Filogenia , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Vacinas Atenuadas , Humanos , Rotavirus/genética , Rotavirus/isolamento & purificação , Rotavirus/classificação , Gastroenterite/virologia , Gastroenterite/epidemiologia , Infecções por Rotavirus/virologia , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/imunologia , Lactente , Pré-Escolar , Paquistão/epidemiologia , Feminino , Masculino , Vacinas Atenuadas/imunologia , Variação Genética , Fezes/virologia , Doença Aguda/epidemiologia
2.
J Genet Eng Biotechnol ; 21(1): 151, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017118

RESUMO

BACKGROUND: Cellulase is an important bioprocessing enzyme used in various industries. This study was conducted with the aim of improving the biodegradation activity of cellulase obtained from the Bacillus subtilis AG-PQ strain. For this purpose, AgO and FeO NPs were fabricated using AgNO3 and FeSO4·7H2O salt respectively through a hydro-thermal method based on five major steps; selection of research-grade materials, optimization of temperature, pH, centrifuge, sample washed with distilled water, dry completely in the oven at the optimized temperature and finally ground for characterization. The synthesized NPs were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to confirm the morphology, elemental composition, and structure of the sample respectively. The diameter of the NPs was recorded through SEM which lay in the range of 70-95 nm. RESULTS: Cultural parameters were optimized to achieve better cellulase production, where incubation time of 56 h, inoculum size of 5%, 1% coconut cake, 0.43% ammonium nitrate, pH 8, and 37 °C temperature were found optimal. The enhancing effect of AgO NPs was observed on cellulase activity (57.804 U/ml/min) at 50 ppm concentration while FeO NPs exhibited an inhibitory effect on cellulase activity at all concentrations. Molecular docking analysis was also performed to understand the underlying mechanism of improved enzymatic activity by nanocatalysts. CONCLUSION: This study authenticates AgO NPs as better nanocatalysts for improved thermostable cellulase biodegradation activity with the extraordinary capability to be potentially utilized in bioethanol production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA