Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
ACS Omega ; 9(24): 25945-25959, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911744

RESUMO

Microtubule affinity-regulating kinase 4 (MARK4) is a serine-threonine kinase that phosphorylates microtubule-associated proteins (MAPs) and increases the microtubule dynamics. Due to its direct involvement in initiation, cell division, progression, and cancer metastasis, MARK4 is considered a potential therapeutic target. Here, we designed, synthesized, and characterized vanillin-isatin hybrids and evaluated their MARK4 inhibitory potential. All of the compounds strongly bind to MARK4 and interact closely with the active site residues. Finally, the compound VI-9 was selected for further investigation due to its high binding affinity and strong MARK4 inhibitory potential. Tau-phosphorylation assay has further confirmed that VI-9 significantly reduced the activity of MARK4. Compared with vanillin, VI-9 showed a better binding affinity and MARK4 inhibitory potential. Cell viability assays on human hepatocellular carcinoma (HCC) cell lines C3A and SNU-475 revealed that VI-9 inhibited their growth and proliferation. In addition, these compounds were nontoxic (up to 200 µM) for noncancerous (HEK-293) cells. Interestingly, VI-9 induces apoptosis and decreases the metastatic potential of the C3A and SNU-475 cell lines. The present work opens a newer avenue for vanillin-isatin hybrids and their derivatives in developing MARK4-targeted anticancer therapies.

2.
Front Bioeng Biotechnol ; 12: 1364700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694624

RESUMO

Dopamine is one of the most important neurotransmitters and plays a crucial role in various neurological, renal, and cardiovascular systems. However, the abnormal levels of dopamine mainly point to Parkinson's, Alzheimer's, cardiovascular diseases, etc. Hydroxyapatite (HAp), owing to its catalytic nature, nanoporous structure, easy synthesis, and biocompatibility, is a promising matrix material. These characteristics make HAp a material of choice for doping metals such as cobalt. The synthesized cobalt-doped hydroxyapatite (Co-HAp) was used as a colorimetric sensing platform for dopamine. The successful synthesis of the platform was confirmed by characterization with FTIR, SEM, EDX, XRD, TGA, etc. The platform demonstrated intrinsic peroxidase-like activity in the presence of H2O2, resulting in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The proposed sensor detected dopamine in a linear range of 0.9-35 µM, a limit of detection of 0.51 µM, limit of quantification of 1.7 µM, and an R2 of 0.993. The optimization of the proposed sensor was done with different parameters, such as the amount of mimic enzyme, H2O2, pH, TMB concentration, and time. The proposed sensor showed the best response at 5 mg of the mimic enzyme, pH 5, 12 mM TMB, and 8 mM H2O2, with a short response time of only 2 min. The fabricated platform was successfully applied to detect dopamine in physiological solutions.

3.
RSC Adv ; 14(23): 15964-15978, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38765473

RESUMO

Herein, a series of heterocyclic organic compounds (PYFD1-PYFD7) are designed with different acceptor moieties at the terminal position of a reference compound (PYFR) for nonlinear optical (NLO) active materials. The optoelectronic characteristics of the designed chromophores were investigated using density functional theory (DFT) calculations with the M06/6-311G(d,p) functional. Frontier molecular orbital (FMO) analysis revealed a significant decrease in the energy of the band gaps (2.340-2.602 eV) for the derivatives as compared to the PYFR reference compound (3.12 eV). An efficient transfer of charge from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) was seen, which was further corroborated by the density of states (DOS) and transition density matrix (TDM) heat maps. The results of the global reactivity parameters (GRPs) indicated that all derivatives exhibited greater softness (σ = 0.384-0.427 eV) and lower hardness (η = 0.394-1.302 eV) as compared to PYFR, indicating a higher level of polarizability in the derivatives. Moreover, all of the derivatives showed significant findings in terms of nonlinear optical (NLO) results as compared to the reference chromophore. PYFD2 showed the most effective NLO response (α = 1.861 × 10-22 and ßtot = 2.376 × 10-28 esu), including a lowered band gap of 2.340 eV, the maximum softness value of 0.4273 eV, and the lowest hardness value of 1.170 eV as compared to other chromophores. The incorporation of different acceptors and thiophene as a π-spacer in this structural alteration significantly contributed to achieving remarkable NLO responses. Therefore, our findings may motivate experimentalists to synthesize these designed NLO active materials for the current advanced technological applications.

4.
BMC Microbiol ; 23(1): 311, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884887

RESUMO

BACKGROUND: The ability of antimicrobial agents to affect microbial adherence to eukaryotic cell surfaces is a promising antivirulence strategy for combating the global threat of antimicrobial resistance. Inadequate use of antimicrobials has led to widespread instances of suboptimal antibiotic concentrations around infection sites. Therefore, we aimed to examine the varying effect of an antimicrobial peptidase lysostaphin (APLss) on staphylococcal adherence to host cells, biofilm biomass formation, and toxin production as a probable method for mitigating staphylococcal virulence. RESULTS: Initially, soluble expression in E. coli and subsequent purification by immobilized-Ni2+ affinity chromatography (IMAC) enabled us to successfully produce a large quantity of highly pure ~ 28-kDa His-tagged mature APLss. The purified protein exhibited potent inhibitory effects against both methicillin-sensitive and methicillin-resistant staphylococcal strains, with minimal inhibitory concentrations (MICs) ranging from 1 to 2 µg/mL, and ultrastructural analysis revealed that APLss-induced concentration-specific changes in the morphological architecture of staphylococcal surface membranes. Furthermore, spectrophotometric and fluorescence microscopy revealed that incubating staphylococcal strains with sub-MIC and MIC of APLss significantly inhibited staphylococcal adherence to human vaginal epithelial cells and biofilm biomass formation. Ultimately, transcriptional investigations revealed that APLss inhibited the expression of agrA (quorum sensing effector) and other virulence genes related to toxin synthesis. CONCLUSIONS: Overall, APLss dose-dependently inhibited adhesion to host cell surfaces and staphylococcal-associated virulence factors, warranting further investigation as a potential anti-staphylococcal agent with an antiadhesive mechanism of action using in vivo models of staphylococcal toxic shock syndrome.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Lisostafina/farmacologia , Lisostafina/metabolismo , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Staphylococcus , Biofilmes , Testes de Sensibilidade Microbiana
5.
ACS Omega ; 8(42): 39288-39302, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901567

RESUMO

A series of benzotrithiophene-based compounds (DCTM1-DCTM6) having D1-π1-D2-π2-A configuration were designed using a reference molecule (DCTMR) via incorporating pyrrole rings (n = 1-5) as the π-spacer (π2). Quantum chemical calculations were performed to determine the impact of the pyrrole ring on the nonlinear optical (NLO) behavior of the above-mentioned chromophores. The optoelectronic properties of the compounds were determined at the MW1PW91/6-311G(d,p) functional. Among all of the derivatives, DCTM5 exhibited the least highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) band gap (Eg) 0.968 eV with a high softness of 0.562 eV-1, and hence possessed the highest polarizability. Interestingly, transition density matrix (TDM) findings demonstrated that DCTM5 with an effective diagonal charge transmission proportion at the acceptor group supports the frontier molecular orbital (FMO) results. Additionally, the exciton binding energy values for DCTM1-DCTM6 were found to be less than that for DCTMR and thus, the effective charge transfer was examined in the derivatives. All of the derivatives exhibited effective NLO outcomes with the highest magnitude of linear polarizability ⟨α⟩, and first (ßtot) and second (γtot) hyperpolarizabilities relative to the parent compound. Nevertheless, the highest ßtot and γtot were obtained for DTCM1 and DTCM6, 7.0440 × 10-27 and 22.260 × 10-34 esu, respectively. Hence, through this structural tailoring with a pyrrole spacer, effective NLO materials can be obtained for optoelectronic applications.

6.
RSC Adv ; 13(41): 28885-28903, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37790104

RESUMO

The applications of 3D inorganic nanomaterials in environmental and agriculture monitoring have been exploited continuously; however, the utilization of semiconductor nanoclusters, especially for detecting warfare agents, has not been fully investigated yet. To fill this gap, the molecular modelling of novel inorganic semiconductor nanocluster Ga12As12 as a sensor for phosgene gas (highly toxic for living things and the environment) is accomplished employing benchmark DFT and TD-DFT investigations. Computational tools have been applied to explore different adsorption sites and the potential sensing capability of the Ga12As12 nanoclusters. The calculated adsorption energy (-21.34 ± 2.7 kcal mol-1) for ten selected complexes, namely, Pgn-Cl@4m-ring (MS1), Pgn-Cl@6m-ring (MS2), Pgn-Cl@XY66 (MS3), Pgn-O@4m-ring (MS4), Pgn-O@XY66 (MS5), Pgn-O@XY64 (MS6), Pgn-O@Y (MS7), Pgn-planar@Y (MS8), Pgn-planar@X (MS9), and Pgn-planar@4m-ring (MS10), manifest the remarkable and excessive adsorption response of the studied nanoclusters. The explored molecular electronic properties, such as interaction distance (3.05 ± 0.5 Å), energy gap (∼2.17 eV), softness (∼0.46 eV), hardness (1.10 ± 0.01 eV), electrophilicity index (10.27 ± 0.45 eV), electrical conductivity (∼1.98 × 109), and recovery time (∼3 × 10-12 s-1) values, ascertain the elevated reactivity and an imperishable sensitivity of the Ga12As12 nanocluster, particularly for its complex MS8. QTAIM analysis exhibits the presence of a strong electrostatic bond (positive ∇2ρ(r) values), electron delocalization (ELF < 0.5), and a strong chemical bond (because of high all-electron density values). In addition, NBO analysis explores the lone pair electron delocalization of phosgene to the nanocluster stabilized by intermolecular charge transfer (ICT) and different kinds of non-covalent interactions. Also, the green region existence expressed by NCI analysis (between the nanocluster and adsorbate) stipulate the energetic and dominant interactions. Furthermore, the UV-Vis, thermodynamic analysis, and density of state (DOS) demonstrate the maximum absorbance (562.11 nm) and least excitation energy (2.21 eV) by the complex MS8, the spontaneity of the interaction process, and the significant changes in HOMO and LUMO energies, respectively. Thus, the Ga12As12 nanocluster has proven to be a promising influential sensing material to monitor phosgene gas in the real world, and this study will emphasize the informative knowledge for experimental researchers to use Ga12As12 as a sensor for the warfare agent (phosgene).

7.
Sci Rep ; 13(1): 14630, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670033

RESUMO

Fullerene free organic chromophores are widely utilized to improve the efficacy of photovoltaic materials. Herein, we designed D-π-A-π-D form chromophores (TAZD1-TAZD5) via end-capped redistribution of donor moieties by keeping the same π-bridge and central acceptor unit for organic solar cells (OSCs). To analyze the photovoltaic characteristics of these derivatives, DFT estimations were accomplished at B3LYP/6-311 G (d,p) functional. Different investigations like frontier molecular orbital (FMO), absorption spectra (UV-Vis), density of states (DOS), binding energy (Eb), open circuit voltage (Voc), and transition density matrix (TDMs) were performed to examine the optical, photophysical and electronic characteristics of afore-mentioned chromophores. A suitable band gap (∆E = 2.723-2.659 eV) with larger bathochromic shift (λmax = 554.218-543.261 nm in acetonitrile) was seen in TAZD1-TAZD5. An effective charge transference from donor to acceptor via spacer was observed by FMO analysis which further supported by DOS and TDM. Further, lower binding energy values also supported the higher exciton dissociation and greater CT in TAZD1-TAZD5. Among all the designed chromophores, TAZD5 exhibited the narrowest Egap (2.659 eV) and maximum red-shifted absorption in solvent as well as gas phase i.e. 554.218 nm and 533.219 nm, respectively which perhaps as a result of the phenothiazine-based donor group (MPT). In a nutshell, all the tailored chromophores can be considered as efficient compounds for promising OSCs with a good Voc response, interestingly, TAZD5 is found to be excellent chromophores as compared to all these designed compounds.

8.
J Cell Biochem ; 124(9): 1223-1240, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37661636

RESUMO

Microtubule affinity-regulating kinase 4 (MARK4) is a member of the Ser/Thr protein kinase family, phosphorylates the microtubule-connected proteins and plays a vital role in causing cancers and neurodegenerative diseases. This kinase modulates multiple signaling pathways, including mammalian target of rapamycin, nuclear factor-κB, and Hippo-signaling, presumably responsible for cancer and Alzheimer's. MARK4 acts as a negative controller of the Hippo-kinase cassette for promoting YAP/TAZ action, and the loss of MARK4 detains the tumorigenic properties of cancer cells. MARK4 is involved in tau hyperphosphorylation that consequently affects neurodegeneration. MARK4 is a promising drug target for cancer, diabetes, and Alzheimer's. Developing the potent and selective inhibitors of MAKR4 are promising in the therapeutic management of associated diseases. Despite its great significance, a few reviews are available to discuss its structure, function and clinical significance. In the current review, we aimed to provide detailed information on the structural features of MARK4 targeted in drug development and its role in various signaling pathways related to cancer and neurodegenerative diseases. We further described the therapeutic potential of MARK4 inhibitors in preventing numerous diseases. Finally, the updated information on MARK4 will be helpful in the further development of effective therapeutic molecules.


Assuntos
Doença de Alzheimer , Neoplasias , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Neoplasias/tratamento farmacológico , Carcinogênese , Proteínas dos Microtúbulos , Microtúbulos
9.
ACS Omega ; 8(33): 30186-30198, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37636949

RESUMO

In the current study, two organic salts (1 and 2) are synthesized, and then crystalline structures are characterized by FTIR, UV spectroscopy, and X-ray crystallographic studies. The organic salts 1 and 2 are optimized at the M06/6-311G(d,p)level of theory and further utilized for analysis of natural bond orbitals (NBOs), natural population, frontier molecular orbitals (FMOs), and global reactivity parameters, which confirmed the stability of the studied compounds and charge transfer phenomenon in the studied compounds. The studies further revealed that 1 and 2 are more stable than 3. The lowest energy merged monomer-coformer conformations were docked as flexible ligands with rigid fungal proteins and DNA receptors. The stagnant binding of the monomer through two H bonds with protein was observed for ligands 1 and 3 while different pattern was found with 2. The coformers formed a single H bond with the active site in 2 and 3 and a single pi-arene H interaction in 1. The two-point ligand-receptor interactions hooked the monomer between DNA base pairs for partial intercalation; pi stacking with additive hydrogen bonding with the base pair led to a strong benzimidazole interaction in 1 and 2, whereas ethylene diamine formed weak H bonding. Thus, the molecular docking predicted that the coformer exhibited DNA intercalation reinforced by its salt formation with benzimidazole 1 and methyl benzimidazole 2. Antioxidant studies depicted that 3 has a higher IC50 value than that of 2,4-D and also the largest value among the studied compounds, whereas 2 showed the lowest value among the studied compounds.

10.
Environ Sci Pollut Res Int ; 30(25): 67071-67086, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37103705

RESUMO

The foliar applied silicon (Si) has the potential to ameliorate heavy metals, especially cadmium (Cd) toxicity; however, Si dose optimization is strategically important for boosting the growth of soil microbes and Cd stress mitigation. Thus, the current research was performed to assess the Si-induced physiochemical and antioxidant trait alterations along with Vesicular Arbuscular Mycorrhiza (VAM) status in maize roots under Cd stress. The trial included foliar Si application at the rate of 0, 5, 10, 15, and 20 ppm while Cd stress (at the rate of 20 ppm) was induced after full germination of maize seed. The response variables included various physiochemical traits such as leaf pigments, protein, and sugar contents along with VAM alterations under induced Cd stress. The results revealed that exogenous application of Si in higher doses remained effective in improving the leaf pigments, proline, soluble sugar, total proteins, and all free amino acids. Additionally, the same treatment remained unmatched in terms of antioxidant activity compared to lower doses of foliar-applied Si. Moreover, VAM was recorded to be at peak under 20 ppm Si treatment. Thus, these encouraging findings may serve as a baseline to develop Si foliar application as a biologically viable mitigation strategy for maize grown in Cd toxicity soils. Overall, the exogenous application of Si helpful for reducing the uptake of Cd in maize and also improving the mycorrhizal association as well as the philological mechanism and antioxidant activities in plant under cadmium stress conditions. Also, future studies must test more doses concerning to varying Cd stress levels along with determining the most responsive crop stage for Si foliar application.


Assuntos
Micorrizas , Poluentes do Solo , Micorrizas/fisiologia , Cádmio/análise , Antioxidantes/metabolismo , Zea mays , Silício/farmacologia , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Açúcares/metabolismo
11.
Biomed Res Int ; 2023: 5250040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726844

RESUMO

Antimicrobial resistance (AMR) is a ubiquitous public health menace. AMR emergence causes complications in treating infections contributing to an upsurge in the mortality rate. The epidemic of AMR in sync with a high utilization rate of antimicrobial drugs signifies an alarming situation for the fleet recovery of both animals and humans. The emergence of resistant species calls for new treatments and therapeutics. Current records propose that health drug dependency, veterinary medicine, agricultural application, and vaccination reluctance are the primary etymology of AMR gene emergence and spread. Recently, several encouraging avenues have been presented to contest resistance, such as antivirulent therapy, passive immunization, antimicrobial peptides, vaccines, phage therapy, and botanical and liposomal nanoparticles. Most of these therapies are used as cutting-edge methodologies to downplay antibacterial drugs to subdue the resistance pressure, which is a featured motive of discussion in this review article. AMR can fade away through the potential use of current cutting-edge therapeutics, advancement in antimicrobial susceptibility testing, new diagnostic testing, prompt clinical response, and probing of new pharmacodynamic properties of antimicrobials. It also needs to promote future research on contemporary methods to maintain host homeostasis after infections caused by AMR. Referable to the microbial ability to break resistance, there is a great ultimatum for using not only appropriate and advanced antimicrobial drugs but also other neoteric diverse cutting-edge therapeutics.


Assuntos
Anti-Infecciosos , Vacinas , Animais , Humanos , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Saúde Pública , Farmacorresistência Bacteriana
12.
Environ Sci Pollut Res Int ; 30(14): 41002-41013, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626058

RESUMO

Heavy metals (HMs) especially cadmium (Cd) absorbed by the roots of crop plants like maize have emerged as one of the most serious threats by causing stunted plant growth along with disturbing the photosynthetic machinery and nutrient homeostasis process. A trial was conducted for inducing Cd stress tolerance in maize by exogenous application of silicon nanoparticles (SiNPs) using five doses of SiNPs (0, 100, 200, 300, and 400 ppm) and three levels of Cd (0, 15, and 30 ppm) for maize hybrid (SF-9515). The response variables included morphological traits and biochemical parameters of maize. The results indicated that Cd level of 30 ppm remained the most drastic for maize plants by recording the minimum traits such as shoot length (39.35 cm), shoot fresh weight (9.52 g) and shoot dry weight (3.20 g), leaf pigments such as chlorophyll a (0.55 mg/g FW), chlorophyll b (0.27 mg/g FW), total contents (0.84 mg/g FW), and carotenoid contents (0.19 µg/g FW). Additionally, the same Cd level disrupted biochemical traits such as TSP (4.85 mg/g FW), TP (252.94 nmol/g FW), TSAA (18.92 µmol g-1 FW), TSS (0.85 mg/g FW), and antioxidant activities such as POD (99.39 min-1 g-1 FW), CAT (81.58 min-1 g-1 FW), APX (2.04 min-1 g-1 FW), and SOD (172.79 min-1 g-1 FW). However, a higher level of Cd resulted in greater root length (87.63 cm), root fresh weight (16.43 g), and root dry weight (6.14 g) along with higher Cd concentration in the root (2.52 µg/g-1) and shoot (0.48 µg/g-1). The silicon nanoparticles (Si NPs) treatment significantly increased all measured attributes of maize. The highest value was noted of all the parameters such as chlorophyll a (0.91 mg/g FW), chlorophyll b (0.57 mg/g FW), total chlorophyll contents (1.48 mg/g FW), total carotenoid contents (0.40 µg/g FW), TSP (6.12 mg/g FW), TP (384.56 nmol/g FW), TSAA (24.64 µmol g-1 FW), TSS (1.87 mg/g FW), POD (166.10 min-1 g-1 FW), CAT (149.54 min-1 g-1 FW), APX (3.49 min-1 g-1 FW), and SOD (225.57 min-1 g-1 FW). Based on recorded findings, it might be inferred that higher levels of Cd tend to drastically reduce morpho-physiological traits of maize and foliage-applied silver nanoparticles hold the potential to ameliorate the adverse effect of Cd stress on maize.


Assuntos
Nanopartículas Metálicas , Poluentes do Solo , Cádmio/análise , Zea mays , Clorofila A , Silício/farmacologia , Prata/farmacologia , Antioxidantes/farmacologia , Superóxido Dismutase , Solo/química , Carotenoides/farmacologia , Poluentes do Solo/análise , Raízes de Plantas
13.
Front Genet ; 13: 880440, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479247

RESUMO

Data integration with phenotypes such as gene expression, pathways or function, and protein-protein interactions data has proven to be a highly promising technique for improving human complex diseases, particularly cancer patient outcome prediction. Hepatocellular carcinoma is one of the most prevalent cancers, and the most common cause is chronic HBV and HCV infection, which is linked to the majority of cases, and HBV and HCV play a role in multistep carcinogenesis progression. We examined the list of known hepatocellular carcinoma biomarkers with the publicly available expression profile dataset of hepatocellular carcinoma infected with HCV from day 1 to day 10 in this study. The study covers an overexpression pattern for the selected biomarkers in clinical hepatocellular carcinoma patients, a combined investigation of these biomarkers with the gathered temporal dataset, temporal expression profiling changes, and temporal pathway enrichment following HCV infection. Following a temporal analysis, it was discovered that the early stages of HCV infection tend to be more harmful in terms of expression shifting patterns, and that there is no significant change after that, followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways regulating pluripotency of stem cells, Cytokine-cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo signaling pathways are just a few of the most commonly enriched pathways. The majority of these pathways are well-known for their roles in the immune system, infection and inflammation, and human illnesses like cancer. We also find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes based on the networks of genes and pathways based on the copy number alterations, mutations, and structural variants study.

14.
Oxid Med Cell Longev ; 2022: 2100092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466089

RESUMO

The poor solubility of the antidiabetic drug gliclazide (Glc) is due to its hydrophobic nature. This research is aimed at improving Glc's solubility and drug release profile, as well as at investigating additional benefits such as bioactivity and antioxidant activity, by forming binary complexes with HPßCD at different w/w ratios (1 : 1, 1 : 2.5, 1 : 4, and 1 : 9) and ternary complexes with HPßCD and Tryp at 1 : 1 : 1, 1 : 1 : 0.27, 1 : 2.5 : 0.27, 1 : 3.6 : 3.6, 1 : 4 : 1, and 1 : 9 : 1, respectively. Complexes were prepared by the physical mixing (PM) and solvent evaporation (SE) methods. The prepared inclusion complexes were meticulously characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. To verify our findings, the inclusion complexes were evaluated by equilibrium solubility, in vitro drug release profile, kinetic models, and antidiabetic and antioxidant activities in animal models. Our results demonstrated that the solubility and drug release profile were found to be enhanced through binary as well as ternary complexes. Notably, ternary complexes with a ratio of 1 : 9 : 1 showed the highest solubility and drug release profile compared to all other preparations. Data on antioxidant activity indicated that the ternary complex had the higher total antioxidant status (TAS), superoxide dismutase (SOD), and catalase (CAT) activity than the binary complex and Glc alone, in contrast to the diabetic group. In vivo antidiabetic activity data revealed a high percentage reduction in the blood glucose level by ternary complexes (49-52%) compared to the binary complexes (45-46%; p ≤ 0.05). HPßCD and Tryp provide a new platform for overcoming the challenges associated with poorly soluble Glc by providing greater complexing and solubilizing capabilities and imparting ancillary benefits to improve the drug's antidiabetic and antioxidant activities.


Assuntos
Gliclazida , Animais , Gliclazida/farmacologia , Antioxidantes/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Solubilidade
15.
Vaccines (Basel) ; 10(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36146554

RESUMO

Chikungunya virus is an alphavirus transmitted by mosquitos that develops into chikungunya fever and joint pain in humans. This virus' name originated from a Makonde term used to describe an illness that changes the joints and refers to the posture of afflicted patients who are affected by excruciating joint pain. There is currently no commercially available drug or vaccine for chikungunya virus infection and the treatment is performed by symptom reduction. Herein, we have developed a computationally constructed mRNA vaccine construct featuring envelope glycoprotein as the target molecule to aid in the treatment process. We have utilized the reverse vaccinology approach to determine epitopes that would generate adaptive immune reactions. The resulting T and B lymphocytes epitopes were screened by various immunoinformatic tools and a peptide vaccine construct was designed. It was validated by proceeding to docking and MD simulation studies. The following design was then back-translated in nucleotide sequence and codons were optimized according to the expression host system (H. sapiens). Various sequences, including 3' and 5' UTR regions, Kozak sequence, poly (A) tail, etc., were introduced into the sequence for the construction of the final mRNA vaccine construct. The secondary structure was generated for validation of the mRNA vaccine construct sequence. Additionally, in silico cloning was also performed to design a vector for proceeding towards in vitro experimentation. The proposed designed vaccine construct may proceed with experimental testing for further efficacy verification and the final development of a vaccine against chikungunya virus infection.

16.
Front Oncol ; 12: 914032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936719

RESUMO

MAP/microtubule affinity-regulating kinase 4 (MARK4) is associated with various biological functions, including neuronal migration, cell polarity, microtubule dynamics, apoptosis, and cell cycle regulation, specifically in the G1/S checkpoint, cell signaling, and differentiation. It plays a critical role in different types of cancers. Hepatocellular carcinoma (HCC) is the one of the most common forms of liver cancer caused due to mutations, epigenetic aberrations, and altered gene expression patterns. Here, we have applied an integrated network biology approach to see the potential links of MARK4 in HCC, and subsequently identified potential herbal drugs. This work focuses on the naturally-derived compounds from medicinal plants and their properties, making them targets for potential anti-hepatocellular treatments. We further analyzed the HCC mutated genes from the TCGA database by using cBioPortal and mapped out the MARK4 targets among the mutated list. MARK4 and Mimosin, Quercetin, and Resveratrol could potentially interact with critical cancer-associated proteins. A set of the hepatocellular carcinoma altered genes is directly the part of infection, inflammation, immune systems, and cancer pathways. Finally, we conclude that among all these drugs, Gingerol and Fisetin appear to be the highly promising drugs against MARK4-based targets, followed by Quercetin, Resveratrol, and Apigenin.

17.
Front Endocrinol (Lausanne) ; 13: 792679, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909576

RESUMO

Background: Timely detection of causative pathogens and their antimicrobial resistance are essential for guiding targeted therapies in bone and joint infections (BJI) patients. We performed a systematic review and meta-analysis to assess the diagnostic value of testing osteoarticular samples with the nucleic acid amplification tests (NAAT) for effective staphylococcal strain identification and the administration of appropriately targeted antimicrobial agents in BJI patients. Methods: Five databases, including PubMed, Embase, Scopus, Web of Science, and the Cochrane Library, were searched for related publications from inception to July 24, 2021. Studies comparing the diagnostic accuracy of NAAT to a microbiological culture reference standard of osteoarticular specimens were eligible. Pooled summary values of sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) of NAAT compared to the microbiological culture reference standard were calculated using bivariate random-effects meta-analyses. Results: From 906 citations, 11 studies were included. Eleven studies comprising 13 datasets (n = 1047) evaluated NAAT accuracy for methicillin-sensitive Staphylococcus aureus (MSSA) identification, while seven studies comprising nine datasets (n = 727) evaluated methicillin-resistant Staphylococcus aureus (MRSA) identification. Against the microbiological culture reference standard, the pooled summary estimates for detection of both MSSA [sensitivity: 0.89 (95% confidence interval [CI] 0.84-0.93), specificity: 0.99 (95% CI 0.97-0.99), PLR: 34.13 (95% CI 20.54-56.73), NLR: 0.19 (95% CI 0.12-0.3), and DOR: 283.37 (95% CI 129.49-620.1)] and MRSA [sensitivity: 0.81 (95% CI 0.67-0.91), specificity: 1.0 (95% CI 0.99-1.0), PLR: 62.1 (95% CI 24.5-157.6), NLR: 0.33 (95% CI 0.16-0.69), and DOR: 300.25 (95% CI 85.01-1060.5)] were comparable. Heterogeneity was moderate. GeneXpert was frequently used among NAA tests, and its diagnostic accuracy was in line with the overall pooled summary estimates. The heterogeneity in diagnostic efficacy (P >0.05) could not be explained by a meta-regression and subgroup analysis of the research design, sample condition, and patient selection technique. Conclusions: Our study suggested that NAAT can be applied as the preferred prescreening test for the timely diagnosis of staphylococcal strains associated with BJI in osteoarticular samples for successful antimicrobial therapy.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Testes Diagnósticos de Rotina , Humanos , Técnicas de Amplificação de Ácido Nucleico , Razão de Chances , Sensibilidade e Especificidade
18.
Front Cell Infect Microbiol ; 12: 758833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967859

RESUMO

Background: Efficient detection tools for determining staphylococcal pleural infection are critical for its eradication. The objective of this meta-analysis was to assess the diagnostic utility of nucleic acid amplification tests (NAAT) in suspected empyema cases to identify staphylococcal strains and avoid unnecessary empiric methicillin-resistant Staphylococcus aureus (MRSA) therapy. Methods: From inception to July 24, 2021, relevant records were retrieved from PubMed, Embase, Scopus, Web of Science, and the Cochrane Library. The quality of studies was determined using the QUADAS-2 tool. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and hierarchical summary receiver operating characteristic (HSROC) curve for NAAT's diagnostic performance were evaluated using an HSROC model. Results: Eight studies comprising 424 samples evaluated NAAT accuracy for Staphylococcus aureus (SA) identification, while four studies comprising 317 samples evaluated methicillin-resistant Staphylococcus aureus (MRSA) identification. The pooled NAAT summary estimates for detection of both SA (sensitivity: 0.35 (95% CI 0.19-0.55), specificity: 0.95 (95% CI 0.92-0.97), PLR: 7.92 (95% CI 4.98-12.59), NLR: 0.44 (95% CI 0.14-1.46), and DOR: 24.0 (95% CI 6.59-87.61) ) and MRSA (sensitivity: 0.45 (95% CI 0.15-0.78), specificity: 0.93 (95% CI 0.89-0.95), PLR: 10.06 (95% CI 1.49-67.69), NLR: 0.69 (95% CI 0.41-1.15), and DOR: 27.18 (95% CI 2.97-248.6) ) were comparable. The I2 statistical scores for MRSA and SA identification sensitivity were 13.7% and 74.9%, respectively, indicating mild to substantial heterogeneity. PCR was frequently used among NAA tests, and its diagnostic accuracy coincided well with the overall summary estimates. A meta-regression and subgroup analysis of country, setting, study design, patient selection, and sample condition could not explain the heterogeneity (meta-regression P = 0.66, P = 0.46, P = 0.98, P = 0.68, and P = 0.79, respectively) in diagnostic effectiveness. Conclusions: Our study suggested that the diagnostic accuracy of NAA tests is currently inadequate to substitute culture as a principal screening test. NAAT could be used in conjunction with microbiological culture due to the advantage of faster results and in situations where culture tests are not doable.


Assuntos
Empiema , Staphylococcus aureus Resistente à Meticilina , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Curva ROC , Staphylococcus
19.
Front Microbiol ; 13: 971263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992654

RESUMO

Biofilm synthesizing multi-drug resistant Staphylococcus pseudintermedius bacteria has been recognized as the human infectious agent. It has been detected in the diseases of skin, ear, and postoperative infections. Its infections are becoming a major health problem due to its multi-drug resistance capabilities. However, no commercial vaccine for the treatment of its infections is currently available in the market. Here we employed the subtractive proteomics and reverse vaccinology approach to determine the potential novel drug and vaccine targets against S. pseudintermedius infections in humans. After screening the core-proteome of the 39 complete genomes of S. pseudintermedius, 2 metabolic pathways dependent and 34 independent proteins were determined as novel potential drug targets. Two proteins were found and used as potential candidates for designing the chimeric vaccine constructs. Depending on the properties such as antigenicity, toxicity and solubility, multi-epitope based vaccines constructs were designed. For immunogenicity enhancement, different specific sequences like linkers, PADRE sequences and molecular adjuvants were added. Molecular docking and molecular dynamic simulation analyses were performed to evaluate the prioritized vaccine construct's interactions with human immune cells HLA and TLR4. Finally, the cloning and expression ability of the vaccine construct was determined in the bacterial cloning system and human body immune response was predicted through immune simulation analysis. In conclusion, this study proposed the potential drug and vaccine targets and also designed a chimera vaccine to be tested and validated against infectious S. pseudintermedius species.

20.
Antibiotics (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009995

RESUMO

Methionine aminopeptidases (MetAPs) are attractive drug targets due to their essential role in eukaryotes as well as prokaryotic cells. In this study, biochemical assays were performed on newly synthesized Isatin-pyrazole hydrazones (PS1-14) to identify potent and selective bacterial MetAPs inhibitors. Compound PS9 inhibited prokaryotic MetAPs, i.e., MtMetAP1c, EfMetAP1a and SpMetAP1a with Ki values of 0.31, 6.93 and 0.37 µM, respectively. Interestingly, PS9 inhibited the human analogue HsMetAP1b with Ki (631.7 µM) about ten thousand-fold higher than the bacterial MetAPs. The in vitro screening against Gram-positive (Enterococcus faecalis, Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia and Escherichia coli) bacterial strains also exhibited their antibacterial potential supported by minimum bactericidal concentration (MBC), disk diffusion assay, growth curve and time-kill curve experiments. Additionally, PS6 and PS9 had synergistic effects when combined with ampicillin (AMP) and ciprofloxacin (CIP) against selective bacterial strains. PS9 showed no significant cytotoxic effect on human RBCs, HEK293 cells and Galleria mellonella larvae in vivo. PS9 inhibited the growth of multidrug-resistant environmental isolates as it showed the MIC lower than the standard drugs used against selective bacterial strains. Overall, the study suggested PS9 could be a useful candidate for the development of antibacterial alternatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA