Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 117: 109941, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012891

RESUMO

OBJECTIVES: The aim of this study was to evaluate whether: 1) Wnt/ß-catenin signaling is involved in cyclosporin A (CsA)-induced hepatotoxicity, and 2) knockdown of this pathway by niclosamide (NCL) attenuate CsA-induced hepatotoxicity. METHODS: The experiment was accomplished in 21 days. Adult male mice were randomly distributed into five groups: control group, CsA (25 mg/kg/day) group, CsA + NCL (2.5 mg/kg/day) group, CsA + NCL (5 mg/kg/day) group, and NCL (5 mg/kg/day) group. RESULTS: NCL showed marked hepatoprotection by significantly decreasing liver enzymes activities and ameliorating the histopathological alterations induced by CsA. Besides, NCL alleviated oxidative stress and inflammation. NCL-treated groups (2.5 and 5 mg/kg) displayed rise in the expression of hepatic peroxisome proliferator-activated receptor-γ (PPAR-γ) by 2.1- and 2.5-fold, respectively. Notably, NCL (2.5 and 5 mg/kg) significantly inhibited Wnt/ß-catenin signaling, evidenced by a marked decrease in the hepatic expression of Wnt3a by 54 % and 50 %, frizzled-7 receptor by 50 % and 50 %, ß-catenin by 22 % and 49 %, and c-myc by 50 % and 50 %, respectively. CONCLUSIONS: NCL can be regarded as a potential agent to mitigate CsA-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Niclosamida , Animais , Masculino , Camundongos , beta Catenina/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ciclosporina/efeitos adversos , Niclosamida/uso terapêutico , Niclosamida/farmacologia , PPAR gama/metabolismo , Via de Sinalização Wnt
2.
Environ Sci Pollut Res Int ; 29(56): 84357-84365, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35780264

RESUMO

For the tendency toward cleaner production and safe conversion of undesired toxic wastes to highly priced advanced products, this work introduces new ceramics/glass composites of Cr2O3/Fe2O3/lead silicate glass (LSG) from industrial LSG wastes. Both chromia Cr2O3 and hematite Fe2O3 ceramics are added equally to the LSG wastes with different percentages (10, 20, and 30 wt.%) via the pressureless sintering method. The competitiveness of this work is dependent on the conversion of undesired waste materials into advanced/smart optical materials with a low cost and an environmentally friendly method. Hence, the influence of both Cr2O3 and Fe2O3 additions on the behavior and the different characteristics of the lead silicate wastes are comprehensively investigated. Evaluation of the final ceramics/glass composites was achieved through their phase composition, microstructure, optical, and magnetic characteristics. The results verified that the insertion of both chromia and hematite together into the glass waste had a key role in improving its morphological properties and optical and magnetic behaviors. Composite with 30% of Cr2O3/Fe2O3 gave the highest optical absorbance of 90%, the lowest and best band gap energy of 1.68 ev, and the highest refractive index of 2.85. Also, it recorded the best magnetic behavior with the highest saturation magnetization of 139.700 × 10-2A m2 kg-1 and the best coercivity of 190.0 Oe. These findings confirmed the successful clean conversion of the hazardous lead silicate waste into advanced products with promising optoelectronic characteristics.


Assuntos
Vidro , Resíduos Industriais , Vidro/química , Silicatos
3.
J Pharm Pharmacol ; 74(8): 1180-1192, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35704284

RESUMO

OBJECTIVES: To explore clonidine (Clon) nephroprotective effects as an inhibitor of organic cationic transporter 2 (OCT2) and p38 mitogen-activated protein kinase (p38 MAPK) against cisplatin (CP)-induced nephrotoxicity. OCT2 is mainly responsible for renal accumulation of CP. Clon has been recently recognized as an OCT2 inhibitor and exerts beneficial effects on renal function and p38 MAPK. This study further investigates its underlying anti-inflammatory, antioxidative and antiapoptotic effects. METHODS: Rats were randomly assigned into five groups: (I) CON, (II) CP, (III) CP + Clon 0.125, (IV) CP + Clon 0.25, (V) CP + Clon 0.5, and (VI) Clon 0.5 alone. Clon was administered orally at 0.125, 0.25 and 0.5 mg/kg/day dosages for 10 days. On day 7, rats in groups from (II) to (V) received a single intraperitoneal injection of CP (10 mg/kg). KEY FINDINGS: Clon 0.25 mg/kg displayed the best nephroprotective outcomes, justified by the significant amelioration of parameters like renal function, oxidative stress, and inflammatory status, as well as modulated the OCT2 expression, phosphorylation of p38 and p53, compared with Clon 0.125 and 0.5 mg/kg. CONCLUSION: This study suggests the promising nephroprotective impact of Clon as an OCT2 inhibitor against CP nephrotoxicity and its proficient role in attenuating oxidative stress, inflammatory status and apoptotic status.


Assuntos
Antineoplásicos , Cisplatino , Clonidina , Transportador 2 de Cátion Orgânico , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Clonidina/farmacologia , Rim/efeitos dos fármacos , Transportador 2 de Cátion Orgânico/antagonistas & inibidores , Estresse Oxidativo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
4.
J Environ Manage ; 312: 114956, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398697

RESUMO

The presence of high concentrations of selenium ions in wastewater is considered an environmental problem. However, the mechanism of selenium ions (Se (IV)) removal by the adsorption process has not been investigated in-depth so far. Also, the recovery and conversion of the industrial waste materials into valuable materials is a vital issue. Therefore, in this study, zinc ferrite nanopowders are economically synthesized from steel-making wastes by co-precipitation method for investigating as adsorbents of selenium species. The produced nanopowders were annealed at 150, 300, 500, and 850 °C for 5 h to scrutinize the impact of annealing temperature on their crystallite size. The compositional, optical, and magnetic features of the nanopowders were defined by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), UV-Vis. spectrophotometer along with vibrating sample magnetometer (VSM). Optical absorbance spectra were found characteristic due to the electronic structure of Fe3+ (3d5) considering the C3v local symmetry of Fe3+ ions. The prepared nanopowders demonstrated good adsorption capacity toward selenium ions (43.67 mg/g at pH 2.5) from an aqueous medium. Adsorption data were found fitting to Freundlich isotherm model. Thus, ZnFe2O4 can be recommended to effectively eliminate selenium ions from aqueous solutions.


Assuntos
Nanopartículas , Selênio , Poluentes Químicos da Água , Adsorção , Compostos Férricos , Resíduos Industriais , Íons , Águas Residuárias/análise , Água , Poluentes Químicos da Água/química , Zinco
5.
J Environ Manage ; 285: 112094, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33588168

RESUMO

Nowadays, the disposal of industrial wastes is an ablaze issue worldwide, especially those containing hazardous materials. Lead silicate glass waste (LSG) produced during lead crystal glass manufacturing, which contains about 30% of toxic lead compounds, belongs to this category. This work aims to adopt an innovative clean method to convert this waste into novel advanced ceramic materials via an environmental friendly method. Chromia Cr2O3 and hematite Fe2O3 ceramics with different content (0, 5, 10, 15%) are added separately to the solid wastes of LSG recovered from national crystal glass industry to obtain various ceramics/LSG composites by pressureless sintering methods. Different properties of the produced composites are evaluated in terms of phase's identification and microstructural features. Optical properties in terms of absorbance, reflectance, band gap (Eg), refractive index (n) and photoluminescence (PL) are investigated. Magnetic and electrical properties are inclusively studied. Results indicated that, an addition of chromia and hematite as well as increasing their content to 15% has enhanced the microstructural features, optical, electrical and magnetic properties of the obtained composites. Cr2O3/LSG composites are considered as promising optical and electrical materials. However, Fe2O3/LSG composites showed the highest optical and magnetic properties. They are strongly recommended in optoelectronic and magneto-optical applications.


Assuntos
Chumbo , Reciclagem , Cerâmica , Vidro , Fenômenos Magnéticos , Teste de Materiais , Silicatos
6.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 155-160, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770876

RESUMO

This paper describes the effect of magnesia in the presence of zirconia on the bioactivity, microstructure and physico-mechanical properties of calcium silicate composition adjusted at calcia/silica ratio(C/S) of 0.5. A mixture from calcium carbonate and silica was conducted at C/S of 0.5. 20wt.% of magnesia and 5-25wt.% of ZrO2 were added. Each mixture was mixed with ethanol in a planetary ball mill, dried, formed and fired at a temperature of 1325±5°C. Phase composition, FE-SEM, and physico-mechanical properties of the fired specimens were determined and explained. The in vitro bioactivities of these specimens were investigated by analysis of their abilities to form apatite in the simulated body fluid (SBF) for a short time (7days) using SEM-EDS. The findings indicated that the surface of the specimens containing 5 and 15wt.% ZrO2 were completely covered by single and multilayered hydroxyapatite (HA) precipitate typical to "cauliflower" morphology, respectively. The surface of the specimen containing 25wt.% ZrO2 did not cover, but there are some scattered HA precipitate. The differences among the results were rationalized based on the phase composition. Vickers hardness and fracture toughness of the specimens of highly promised bioactivity were 2.32-2.57GPa and 1.80-1.50MPa. m1/2, respectively. The properties of these specimens are similar to the properties of human cortical bone. Consequently, these composites might be used as bone implant materials.


Assuntos
Compostos de Cálcio/farmacologia , Cálcio/análise , Cerâmica/farmacologia , Óxido de Magnésio/farmacologia , Silicatos/farmacologia , Dióxido de Silício/análise , Zircônio/farmacologia , Materiais Biocompatíveis/farmacologia , Dureza , Humanos , Tamanho da Partícula , Espectrometria por Raios X , Difração de Raios X
7.
ScientificWorldJournal ; 2014: 489308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701170

RESUMO

The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.


Assuntos
Navios/instrumentação , Simulação por Computador , Desenho de Equipamento , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA